Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 17 (2022), 139 -- 179

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

A STRUCTURE EXPLOITING ALGORITHM FOR NON-SMOOTH SEMI-LINEAR ELLIPTIC OPTIMAL CONTROL PROBLEMS

Olga Weiß and Andrea Walther

Abstract. We investigate optimization problems with a non-smooth partial differential equation as constraint, where the non-smoothness is assumed to be caused by Nemytzkii operators generated by the functions abs, min and max. For the efficient as well as robust solution of such problems, we propose a new optimization method based on abs-linearization, i.e., a special handling of the non-smoothness with proficient exploitation of the non-smooth structure. The exploitation of the given data allows a targeted and optimal decomposition of the optimization problem in order to compute stationary points. This approach is able to solve the considered class of non-smooth optimization problems in very few Newton steps and additionally maintains reasonable convergence properties. Numerical results for non-smooth optimization problems illustrate the proposed approach and its performance.

2020 Mathematics Subject Classification: 49J52; 37N30; 46N10; 65N30; 49M15; 35J61;
Keywords: Non-Smooth Optimization; Constant Abs-Linearization; PDE Constrained Optimization; Non-Smooth PDE; Elliptic Optimal Control Problem

Full text

References

  1. E.L. Allgower, K. Böhmer, F.A. Potra, and W.C. Rheinboldt. A mesh- independence principle for operator equations and their discretizations, SIAM Journal on Numerical Analysis, 23(1):160–169, 1986. MR0821912. Zbl 0591.65043.

  2. I. Antal and J. Karátson. A mesh independent superlinear algorithm for some nonlinear nonsymmetric elliptic systems, Computers & Mathematics with Applications, 55(10):2185– 2196, 2008. MR2413685. Zbl 1142.65439.

  3. J. Appell and P.P Zabrejko. Nonlinear Superposition Operators. Cambridge Tracts in Mathematics, Cambridge University Press, 1990. MR0742624. Zbl 1156.47052.

  4. V. Barbu. Optimal Control of Variational Inequalities, Pitman, Boston, 1984. MR0742624. Zbl 0574.49005.

  5. F.E. Browder. Problèmes non linéaires, Séminaire de Mathématiques Supérieures, Presses Univ. Montréal, (15), 1966. MR0250140. Zbl 0153.17302.

  6. E. Casas. Control of an elliptic problem with pointwise state constraints, SIAM Journal on Control and Optimization, 24(6):1309–1318, 1986. MRMR0861100. Zbl 0606.49017.

  7. E. Casas. Boundary control of semilinear elliptic equations with pointwise state constraints, SIAM Journal on Control and Optimization, 31(4):993–1006, 1993. MR1227543. Zbl 0798.49020

  8. E. Casas, De Los Reyes, J.C., and F. Tröltzsch. Sufficient second-order optimality condi- tions for semilinear control problems with pointwise state constraints, SIAM Journal on Optimization, 19(2):616–643, 2008. MR2425032. Zbl 1161.49019.

  9. C. Christof, C. Clason, C. Meyer, and S. Walther. Optimal control of a non-smooth semilinear elliptic equation, Mathematical Control and Related Fields, 8(1):247–276, 2018. MR3810876. Zbl 1407.49026.

  10. J.C. De Los Reyes. On the optimal control of some nonsmooth distributed parameter systems arising in mechanics, GAMM-Mitteilungen, 40(4):268–286, 2018. MR3796765.

  11. S. Fiege, A. Walther, and A. Griewank. An algorithm for nonsmooth optimization by successive piecewise linearization, Mathematical Programming, Series A, 2018. DOI: 10.1007/s10107-018-1273-5. Zbl 1420.49015.

  12. D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001. MR1814364. Zbl 1042.35002.

  13. A. Griewank. On stable piecewise linearization and generalized algorithmic differentiation, Optimization Methods and Software, 28(6):1139–1178, 2013. MR3175461. Zbl 1278.65021.

  14. A. Griewank and A. Walther. First and second order optimality conditions for piecewise smooth objective functions, Optimization Methods and Software, 31(5):904-930, 2016. MR3534563. Zbl 1385.90026.

  15. A. Griewank and A. Walther. Relaxing kink qualifications and proving convergence rates in piecewise smooth optimization, SIAM Journal on Optimization, 29(1):262–289, 2019. MR3902457. Zbl 1410.90252.

  16. M. Hintermüller and M. Ulbrich. A mesh-independence result for semismooth Newton methods, Mathematical Programming, 101(1):151–184, 2004. MR2085262. Zbl 1079.65065.

  17. K. Ito and K. Kunisch. Semi-smooth newton methods for state-constrained optimal control problems, Syst. Control Lett., 50:221–228, 2003. MR2010814. Zbl 1157.49311.

  18. J. Jahn. Introduction to the Theory of Nonlinear Optimization, Springer, 2007. MR2292173. Zbl 1115.49001.

  19. F. Kikuchi, K. Nakazato and T. Ushijima. Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria, Japan Journal of Applied Mathematics, 1(2):369–403, 1984. MR0840803. Zbl 0634.76117.

  20. A. Logg, K.-A. Mardal, and G. Wells. Automated Solution of Differential Equations by the Finite Element Method, Springer, 2012. MR3075806. Zbl 1247.65105.

  21. C. Meyer, A. Rösch, and F. Tröltzsch. Optimal control of PDEs with regularized pointwise state constraints, MR2208817. Zbl 1103.90072.

  22. A. Schiela. Barrier methods for optimal control problems with state constraints, SIAM Journal on Optimization, 20(2):1002–1031, 2009. MR2534773. Zbl 1201.90201.

  23. R. Temam. A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma, Archive for Rational Mechanics and Analysis, 60:51–73, 1975. MR0412637. Zbl 0328.35069.

  24. F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, Graduate Studies in Mathematics. American Mathematical Society, 2010. MR2583281. Zbl 1195.49001.

  25. M. Ulbrich. Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, Society for Industrial and Applied Mathematics, 2011. MR2839219. Zbl 1235.49001.

  26. M. Ulbrich and S. Ulbrich. Primal-dual interior-point methods for PDE-constrained optimization, Mathematical Programming, 117(1):435–485, 2009. MR2421314. Zbl 1171.90018.

  27. A. Walther, O. Weiß, A. Griewank and S. Schmidt. Nonsmooth optimization by successive abs-linearisation in function spaces, Applicable Analysis, 2020. DOI: 10.1080/00036811.2020.1738397. Zbl 07485300.

  28. O. Weiß. Nonsmooth Optimization by Abs-Linearization in Reflexive Function Spaces, PhD thesis, Humboldt-Universität zu Berlin, 2021.

  29. E. Zeidler. Applied Functional Analysis. Applications to Mathematical Physics, Springer, 1995. MR1347691. Zbl 0834.46002.



Olga Weiß
Institut für Mathematik, Humboldt-Universität zu Berlin
Unter den Linden 6, 10117 Berlin, Germany
e-mail: olga.weiss@hu-berlin.de


Andrea Walther
Institut für Mathematik, Humboldt-Universität zu Berlin
Unter den Linden 6, 10117 Berlin, Germany
e-mail: andrea.walther@math.hu-berlin.de


http://www.utgjiu.ro/math/sma