Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 17 (2022), 205 -- 223

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

COUPLED FIXED POINT SETS WITH DATA-DEPENDENCE AND STABILITY

Binayak S. Choudhury, Nikhilesh Metiya and Sunirmal Kundu

Abstract. In this paper we establish a coupled fixed point theorem of a coupled multivalued mapping defined on a complete metric space. In our result we use a new contractive inequality. There are rational terms in the expression of the inequality. The contractive condition on the nonlinear map is assumed only to hold on the elements that are related by a binary relation. The main theorem has several corollaries and is illustrated with example. The main result is deduced in metric spaces. Its consequences are discussed for α- admissible mapping as well as in metric spaces with partial order and graph respectively.

2020 Mathematics Subject Classification: 54H10, 54H25, 47H10.
Keywords: Metric space; Hausdorff distance; Binary relation; Dominated map; Coupled fixed point; Data dependence; Stability.

Full text

References

  1. M. Abbas, L. \acuteCiri\acutec, B. Damjanovi\acutec, M. Ali Khan, Coupled coincidence and common fixed point theorems for hybrid pair of mappings, Fixed Point Theory Appl. 2012 (2012) : 4, 11 pp. MR2891977. Zbl 1281.54014. doi:10.1186/1687-1812-2012-4.

  2. A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl.17(4) (2015), 693--702. MR3421979. Zbl 1335.54040. doi:10.1007/s11784-015-0247-y.

  3. M. R. Alfuraidan, M. A. Khamsi, Caristi fixed point theorem in metric spaces with a graph, Abstr. Appl. Anal. 2014 (2014), Article ID 303484, 5 pp. MR3182273. Zbl 1429.54043. doi:10.1155/2014/303484.

  4. M. S. Asgari, B. Mousavi, Coupled fixed point theorems with respect to binary relations in metric spaces, J. Nonlinear Sci. Appl. 8(2) (2015), 153--162. MR3300248. Zbl 06430295. doi:10.22436/jnsa.008.02.07.

  5. G. V. R. Babu, Y. J. Cho, M. V. R. Kameswari, Common coupled fixed points of compatible pair of maps satisfying condition (B) with a rational expression in partially ordered metric spaces, Thai J. Math. 13(3) (2015), 561--579. MR3446196. Zbl 1349.54083.

  6. I. Beg, A. R. Butt, S. Radojevic, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl. 60(5) (2010), 1214--1219. MR2672921. Zbl 1201.54029. doi:10.1016/j.camwa.2010.06.003.

  7. T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65(7) (2006), 1379--1393. MR2245511. Zbl 1106.47047. doi:10.1016/j.na.2005.10.017.

  8. R. K. Bose, R. N. Mukherjee, Stability of fixed point sets and common fixed points of families of mappings, Indian J. Pure Appl. Math. 11(9) (1980), 1130--1138. MR584134. Zbl 0437.54037.

  9. I. Cabrera, J. Harjani, K. Sadarangani, A fixed point theorem for contractions of rational type in partially ordered metric spaces, Ann. Univ. Ferrara Sez. VII Sci. Mat. 59(2) (2013), 251--258. MR3120037. Zbl 1319.54014. doi:10.1007/s11565-013-0176-x.

  10. S. Chandok, J. K. Kim, Fixed point theorem in ordered metric spaces for generalized contractions mappings satisfying rational type expressions, Nonlinear Funct. Anal. Appl. 17(3) (2012), 301--306. Zbl 1452.54026.

  11. S. Chandok, B. S. Choudhury, N. Metiya, Fixed point results in ordered metric spaces for rational type expressions with auxiliary functions, J. Egyptian Math. Soc. 23(1) (2015), 95--101. MR3317306. Zbl 1317.54016. doi:10.1016/j.joems.2014.02.002.

  12. C. Chifu, G. Petruşel, New results on coupled fixed point theory in metric spaces endowed with a directed graph, Fixed Point Theory Appl. 2014 (2014): 151, 13 pp. MR3374742. Zbl 1347.54070. doi:10.1186/1687-1812-2014-151.

  13. C. Chifu, G. Petruşel, Coupled fixed point results for (ℑ-contractions of type (b) in b-metric spaces endowed with a graph, J. Nonlinear Sci. Appl. 10(2) (2017), 671--683. MR3623029. Zbl 1412.47108. doi:10.22436/jnsa.010.02.29.

  14. A. Chiş-Novac, R. Precup, I. A. Rus, Data dependence of fixed points for non-self generalized contractions, Fixed Point Theory 10(1) (2009), 73--87. MR2524149. Zbl 1226.47056.

  15. B. S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modelling 54(1-2) (2011), 73--79. MR2801866. Zbl 1225.54016. doi:10.1016/j.mcm.2011.01.036.

  16. B. S. Choudhury, N. Metiya, S. Kundu, Existence and stability results for coincidence points of nonlinear contractions, Facta Univ. Ser. Math. Inform. 32 (4) (2017), 469--483. MR3749137. Zbl 1474.54142. doi:10.22190/FUMI1704469C.

  17. B. S. Choudhury, N. Metiya, S. Kundu, Existence, data-dependence and stability of coupled fixed point sets of some multivalued operators, Chaos Solitons Fractals 133 (2020), Article ID 109678, 7 pp. MR4062528. Zbl 7501172. doi:10.1016/j.chaos.2020.109678.

  18. B. K. Dass, S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J. Pure Appl. Math. 6(12) (1975), 1455--1458. MR0467708. Zbl 0371.54074.

  19. D. Gopal, L. M. Budhia, S. Jain, A relation theoretic approach for φ- fixed point result in metric space with an application to an integral equation, Commun. Nonlinear Anal. 6(1) (2019), 89--95.

  20. D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11(5) (1987), 623--632. MR0886653. Zbl 0635.47045. doi:10.1016/0362-546X(87)90077-0.

  21. J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (4) (2008), 1359--1373. MR2367109. Zbl 1139.47040. doi:10.1090/S0002-9939-07-09110-1.

  22. D. S. Jaggi, B. K. Dass, An extension of Banach's fixed point theorem through rational expression, Bull. Cal. Math. Soc. 72(5) (1980), 261--262. MR0669594. Zbl 0476.54044.

  23. M. S. Khan, M. Berzig, S. Chandok, Fixed point theorems in bimetric space endowed with a binary relation and applications, Miskolc Math. Notes 16 (2) (2015), 939–-951. MR3454153. Zbl 1349.54107. doi:10.18514/MMN.2015.1263.

  24. T. C. Lim, On fixed point stability for set valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110(2) (1985), 436--441. MR0805266. Zbl 0593.47056. doi:10.1016/0022-247X(85)90306-3.

  25. Z. Mustafa, M. M. M. Jaradat, H. M. Jaradat, Some common fixed point results of graphs on b-metric space, J. Nonlinear Sci. Appl. 9 (6) (2016), 4838--4851. MR3551142. Zbl 1470.54086. doi:10.22436/jnsa.009.06.119.

  26. J. T. Markin, A fixed point stability theorem for nonexpansive set valued mappings, J. Math. Anal. Appl. 54 (2) (1976), 441--443. MR0412910. Zbl 0335.47041. doi:10.1016/0022-247X(76)90212-2.

  27. S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (2) (1969), 475--488. MR0254828. Zbl 0187.45002.

  28. H. K. Nashine, B. S. Choudhury, N. Metiya, Coupled coincidence point theorems in partially ordered metric spaces, Thai J. Math. 12 (3) (2014), 665--685. MR3291693. Zbl 1328.54046.

  29. J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22(3) (2005), 223--239. MR2212687. Zbl 1140.47045. doi:10.1007/s11083-005-9018-5.

  30. A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (5) (2004), 1435--1443. MR2053350. Zbl 1060.47056. doi:10.1090/S0002-9939-03-07220-4.

  31. I. A. Rus, A. Petruşel, A. Sîntămărian, Data dependence of the fixed points set of multivalued weakly Picard operators, Studia Univ. ``Babeş - Bolyai", Math. 46 (2) (2001), 111--121. MR1954261. Zbl 1027.47053.

  32. I. A. Rus, A. Petruşel, A. Sîntămărian, Data dependence of the fixed points set of some multivalued weakly Picard operators, Nonlinear Anal. 52 (8) (2003), 1947--1959. MR1954591. Zbl 1055.47047. doi:10.1016/S0362-546X(02)00288-2.

  33. B. Samet, C. Vetro, Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces, Nonlinear Anal. 74(12) (2011), 4260--4268. MR2803028. Zbl 1216.54021. doi:10.1016/j.na.2011.04.007.

  34. B. Samet, M. Turinici, Fixed point theorems on a metric space endowed with an aribitary binary relation and applications, Commun. Math. Anal. 13(2) (2012), 82--97. MR2998356. Zbl 1259.54024. doi:10.1163/156855399X00162.

  35. B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75(4) (2012), 2154--2165. MR2870907. Zbl 1242.54027. doi:10.1016/j.na.2011.10.014.

  36. P. Semwal, R. C. Dimri, A Suzuki type coupled fixed point theorem for generalized multivalued mapping, Abstr. Appl. Anal. 2014 (2014), Article ID 820482, 8pp. MR3198255. Zbl 1469.54184. doi:10.1155/2014/820482.



Binayak S. Choudhury
Department of Mathematics, Indian Institute of Engineering Science and Technology,
Shibpur, Howrah - 711103, West Bengal, India.
E-mail: binayak12@yahoo.co.in

Nikhilesh Metiya
Department of Mathematics, Sovarani Memorial College,
Jagatballavpur, Howrah-711408, West Bengal, India.
E-mail: metiya.nikhilesh@gmail.com

Sunirmal Kundu
Department of Mathematics, Government General Degree College, Salboni,
Paschim Mednipur - 721516, West Bengal, India.
E-mail: sunirmalkundu2009@rediffmail.com




http://www.utgjiu.ro/math/sma