Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 17 (2022), 225 -- 239
This work is licensed under a Creative Commons Attribution 4.0 International License.EXISTENCE RESULTS FOR LANGEVIN EQUATION WITH RIESZ-CAPUTO FRACTIONAL DERIVATIVE
Naas Adjimi and Maamar Benbachir
Abstract. In this paper, we examine existence and uniqueness of solutions for nonlinear Langevin equation involving Riesz-Caputo fractional derivatives, with a class of anti-periodic boundary conditions. By applying a variety of fixed point theorems as Banach, Schaefer and Krasnoselskii fixed point theorems. Three examples are given to illustrate main results.
2020 Mathematics Subject Classification: 26A33, 34B25, 34B15
Keywords: Langevin equation; Riesz-Caputo derivative; fixed point theorems.
References
B. Ahmad, S. K. Ntouyas, J. Tariboon and A. Alsaedi, Caputo type fractional differential equations with Nonlocal Riemann-Liouville and Erdely-Kober type Integral Boundary conditions, Fliomat 31 (14) (2017), 4515-4529. MR3730375.
O. Baghani, On fractional Langevin equation involving two fractional orders, Commun. Nonlinear Sci. numer. simul. 42 (2017), 675-681. MR3534965. Zbl 07257118.
J. P. Bouchaud and R. Cont, Langevin approach to stock market fluctuations and crashes, Eur. Phys. J. B. Condens. Matter Complex Syst. 6 (1998), 543-550.
F. Chen, D. Baleanu and G. Cheng Wu, Existence results of fractional differential equations with Riesz-Caputo derivative, Eur. phys. J. special topics 226 (2017), 4341-4325.
F. Chen, A. Chen and X. Wu, Anti-periodic boundary value problems with Riesz-Caputo derivative, Advanced in Difference equations. Springer, 2019. MR3927340. Zbl 07048531.
Y. G. Chuan, J. Zhang, G. Cheng Wu, Positive solution of fractional differential equations with Riesz space derivative, Applied Mathematics Letters, Elsevier 95 (2019), 59-64. MR3933364. Zbl 1425.34013.
R. Derzi, New Existence Results for fractional Langevin equation. Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), 2193-2203. MR4008759.
H. Fazli and J. J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions. Chaos, solitons and fractals 114 (2018), 332-337. MR3856654. Zbl 1415.34016.
J. H. Jeon and R. Metzler, Fractional Brownian motion and motion governed by fractional Langevin equation in confined geometries, Phys. Rev. E. 81, 2010, 021103. MR2610879.
S. Harikrishnan, K. Kanagarajan and E. M. Elsayed, Existence and stability results for Langevin equations with Hilfer fractional derivative, Res Fixed Point Theory Appl. 2018, Article ID 20183. MR3931150.
A. A. Kilbas, M. H. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, 2006. MR2218073.
P. Langevin, On the Theory of Brownian Motion, C. R. Acad. Sci. (Paris) 146 (1908), 530–533. Zbl 1206.26008.
S. Picozzi and B. J. West, Fractional Langevin equation model of memory in financial markets, Phys. Rev. (3) 66 (2002), 046118. MR1935186
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. MR1658022. Zbl 0924.34008.
A. Saadi and M. Benbachir, Positive solutions for three-point nonlinear fractional boundary value problems, E. J. Qualitative Theory of Diff. Equ. 2 (2011). MR2756027. Zbl 1206.26008.
J. Schluttig, D. Alamanova, V. Helms, U. S Schwarz, Dynamics of protein-protein encounter a Langevin equation approach with reaction patches, J. Chem Phys., Oct 21; 129(15), 2008.
D. R. Smart: Fixed Point Theorems, Cambridge University Press, 1974. MR0467717. Zbl 0297.47042.
C. Thaiprayoon, S. K. Ntouyas and J. Tariboon, On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation, Adv. Difference Equ. (2015), 2015:374. MR3433354. Zbl 1422.34064.
Naas Adjimi
Laboratory of Mathematics and Applied Sciences University of Ghardaia, 47000, Algeria.
e-mail: naasadjimi@gmail.com
Maamar Benbachir
Faculty of Sciences, Saad Dahlab University, Blida, Algeria.
e-mail: mbenbachir2001@gmail.com