Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 17 (2022), 241 -- 267

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

A DYNAMIC CONTACT PROBLEM FOR THERMO-ELECTRO-VISOPLASTIC MATERIALS WITH DAMAGE AND INTERNAL STATE VARIABLE

Laid Maiza, Tedjani Hadj Ammar and Mohamed Laid Gossa

Abstract. This work studies a mathematical model involving a dynamic contact between two thermo-elasto-viscoplastic piezoelectric bodies with internal state variables and damage. The contact is modelled with normal compliance condition and adhesion effect of contact surfaces. We derive variational formulation of the problem and we prove an existence and uniqueness result of the weak solution. The proof is based on classical existence and uniqueness result on parabolic inequalities, differential equations and fixed-point arguments.

2020 Mathematics Subject Classification: 35Q74; 47H10; 49J40; 74D10
Keywords: thermo-elasto-viscoplastic piezoelectric materials; internal state variable; fixed point; adhesion; damage; normal compliance; weak solution.

Full text

References

  1. L.E Andersson, A. Klarbring, J. R. Barber, M. Ciavarella, On the existence and uniqueness of steady state solutions in thermoelastic contact with frictional heating, Proceedings of the Royal Society A Mathematical, Physical and Engineering Sciences. 461(2005), 1261–1282. MR2147748. Zbl 1145.74389.

  2. M. Barboteu, M. Sofonea, Analysis and numerical approach of a piezoelectric contact problem, Ann.Aca.Rom. Sci, 1(2009), 7–30. MR2660410. Zbl 1426.74233.

  3. H. Benaissa, EL-H. Essoufi, R. Fakhar, Existence results for unilateral contact problem with friction of thermo-electroelasticity, Applied Mathematics and Mechanics. 36 (2015), 911–926. MR3364983. Zbl 1322.35039.

  4. B. Benaissa, E-LH. Essoufi, R. Fakhar, Analysis of a Signorini problem with nonlocal friction in thermo-piezoelectricity, Glasnik Matematicki. 51(2016), 391– 411. MR3580206. Zbl 1361.35174.

  5. D.S. Chandrasekharaiah, A uniqueness theorem in generalized thermoelasticity, J. Tech. Phys. 25(1984), 345–350. Zbl 0572.73009.

  6. D.S. Chandrasekharaiah, A generalized linear thermoelasticity theory for piezoelectric media, Acta Mechanica, 71(1988), 39–49. Zbl 0631.73092.

  7. O. Chau, J.R. Fernandez, M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion, Journal of Computational and Applied Mathematics. 159(2003), 431–465. MR2005970. Zbl 1075.74061.

  8. O. Chau, M. Shillor, M. Sofonea, Dynamic frictionless contact with adhesion, Z. Angew.Math.Phys. 55(2004), 32–47. MR2033859. Zbl 1064.74132.

  9. N. Cristescu, I.Suliciu, Viscoplasticity. Rev. transl. from the Roumanian, Editura Technica 307(1982). MR691135. Zbl 0514.73022.

  10. S. Drabla, M. Rochdi, M. Sofonea, A frictionless contact prolem for elastic-viscoelastic materials with internal state variables, Math.Comput.Modelling. 26(1997), 31–47. MR1600213. Zbl 1185.35278.

  11. G. Duvaut, Free boundary problem connected with thermoelasticity and unilateral contact, in Free boundary problems, (1980), 217–236. MR630749. Zbl 0458.73100.

  12. A.S. El-Karamany, M.A. Ezzat, On the boundary integral formulation of thermo-viscoelasticity theory, International Journal of Engineering Science. 40(2002), 1943–1956. MR1935522. Zbl 1211.74064.

  13. EL-H. Essoufi, M. Alaoui, M. Bouallala, Quasistatic thermo-electro-viscoelastic contact problem with Signorini and Tresca's friction, Electron. J. Differential Equations.5(2019), 1–21. MR3904846. Zbl 1405.74017.

  14. M.A. Ezzat, E.S. Awad, textit Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures, Zeitschrift für angewandte Mathematik und Physik , 62(2011), 937–952. MR2843925. Zbl 1264.74049.

  15. M. Frémond, Adhérence des solides, J. Mécanique Théorique et Appliquée, 6(1987), 383–407. MR912217. Zbl 0645.73046.

  16. M. Frémond, K.L. Kuttler, B. Nedjar, M. Shillor One-dimensional models of damage, Adv. Math. Sci. Appl. 8(1998), 541–570. MR1657215. Zbl 0915.73041.

  17. M. Frémond, K. L. Kuttler, M. Shillor, Existence and uniqueness of solutions for a one-dimensinal damage mode, J.Math.Anal.Appl, 271(1999), 271–294. MR1664356. Zbl 0920.73328.

  18. M. Frémond, B. Nedjar, Damage, gradient of damage and principle of virtual power, Int.J.Solids Stuct. 33(1996),1083–1103. MR1370124. Zbl 0910.73051.

  19. S. Guha, A.K Singh,, TPlane wave reflection/transmission in imperfectly bonded initially stressed rotating piezothermoelastic fiber-reinforced composite half-spaces. Eur. J. Mech. A Solids. (88)(2021), 104–242. MR4226321. Zbl 7362904.

  20. T. Hadj Ammar, S. Drabla, B. Benabderrahmane, Analysis and approximation of frictionless contact problems between two piezoelectric bodies with adhesion, Geor.Math.J 21(2014), 431–445. MR3284708. Zbl 1305.74063.

  21. N. Hemici, A. Matei, A frictioneless contact problem with adhesion between two elastic bodies, Ann.Univ.Craiova Math.comp. Sci. Ser. 30(2003), 90–99. MR2064625. Zbl 1073.74605.

  22. D. Ieşan, R. Quintanilla, Some theorems in the theory of microstretch thermopiezoelectricity, Internat. J. Engrg. Sci. 1(2007), 1–116. MR2314584. Zbl 1213.74021.

  23. M.I. Idiart, H. Moulinec, P.Ponte. Castañeda, P. Suquet, Macroscopic behavior and field fluctuations in viscoplastic composites: second-order estimates versus full-field simulations, J.Mech.Phys.Solids. 5(2006), 1029–1063. MR2216544. Zbl 1120.74720.

  24. O. Kavian, Introduction á la théorie des points critiques et Applications aux équations elliptiques, Springer, Verlag. 1993. MR1276944. Zbl 0797.58005.

  25. Z. B. Kuang, Two theoretical problems in electro-magneto-elastic analysis, Acta Mech. 224(2013), 1201–1212. MR3069309. Zbl 1338.74042.

  26. Z. Lerguet, M. Shillor, M. Sofonea, A frictional contact problem for an electro-viscoelastic body, Electronic Journal of Differential Equations, 170( 2007). MR2366063. Zbl 0797.58005.

  27. R. D. Mindlin, On the equations of motion of piezoelectric crystals, in: Problems of Continuum Mechanics, SIAM, Philadelphia, N. I. Muskelishvili's Birthday. 70(1961), 282–290. MR0128719. Zbl 555555555.

  28. J. Neℑ. HlaváℑMathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1981. MR600655. Zbl 0448.73009.

  29. R. Quintanilla, A spatial decay in the linear theory of microstretch piezoelectricity, iMath. Comput. Modelling. 47(2008), 1117–1124. MR2428319. Zbl 1145.74347.

  30. M. Raous, L. Cangémi, M. Cocu, A consistent model coupling adhesion, friction and unilateral contact, Comput. Methods Appl. Engrg. 177(1999), 383–399. MR1710458. Zbl 0949.74008.

  31. S.K. Roychoudhuri, N. Bandyopadhyay, Interactions due to body forces in generalized thermo-elasticity III,Comput. Math. Appl. 54(2007), 1341–1352. MR2368217. Zbl 1159.74018

  32. J.N. Sharma, M. Pal, TRayleigh-lamb waves in magneto-thermoelastic homogeneous isotropic platel, Internat. J. Engrg. Sci. 22(2004), 137–155. MR2020090. Zbl 1211.74136.

  33. J.N. Sharma, P.K. Sharma, S.K. Rana, Extensional wave motion in homogeneous isotropic thermoelastic plate by using asymptotic method, Appl. Math. Modelling. 35(2011), 317–327. MR2677937. Zbl 1202.74016.

  34. J.N. Sharma, V. Walia, S.K. Gupta, Reflection of piezothermoelastic waves from the charge and stress free boundary of a transversely isotropic half space, Internat. J. Engrg. Sci. 46(2008), 131–146. MR2395619. Zbl 1213.74138.

  35. M. Shillor, M. Sofonea, A quasistatic viscoelastic contact problem with friction, Internat. J. Engrg. Sci. 38(2000), 1517–1533. MR1763038. Zbl 1210.74132..

  36. M. Sofonea, W. Han, M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics, 276, Chapman-Hall/CRC Press, New York, 2006. MR2183435. Zbl 1089.74004.




Laid Maiza
Laboratory of Applied Mathematics, Department of Mathematics
University Kasdi Merbah,30000 Ouargla, Algeria.
e-mail: maiza.laid@univ-ouargla.dz

Tedjani Hadj Ammar
Departement of Mathematics, University of El-Oued,
39000 El-Oued, Algeria.
e-mail: hadjammar_tedjani@univ-eloued.dz

Mohamed Laid Gossa
Department of Mathematics, University of Khenechla,
Khenechla, Algeria.
e-mail: gossa.med.laid@gmail.com




http://www.utgjiu.ro/math/sma