Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 17 (2022), 277 -- 285

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

THE SĂLĂGEAN-TYPE PROBABILITY DISTRIBUTION

Saurabh Porwal and Nanjundan Magesh

Abstract. The purpose of the present paper is to investigate the Sălăgean - type probability distribution of order α. In this paper, we obtain moments, factorial moments and moment generating function for this distribution. Finally, we obtain a entropy of this distribution. Our results improve and generalize the results of Porwal iteSP-2019-AM.

2020 Mathematics Subject Classification: 97K50; 30C45.
Keywords: Probability distribution, Starlike and convex functions, Sălăgean differential operator.

Full text

References

  1. Ş. Alt\i nkaya and S. Yalç\i n, Poisson distribution series for analytic univalent functions, Complex Anal. Oper. Theory 12 (5) (2018), 1315--1319. MR3800974. Zbl 1393.30012.

  2. M. Fisz, Probability theory and mathematical statistics, Third edition. Authorized translation from the Polish. Translated by R. Bartoszynski, John Wiley & Sons, Inc., New York, 1963.

  3. E. KadioℑtextitOn subclass of univalent functions with negative coefficients, Appl. Math. Comput. 146 (2003), no.~2-3, 351--358. MR2006074. Zbl 1030.30008.

  4. S. Owa, M. Obradovic and S. K. Lee, Notes on certain subclass of analytic functions introduced by Sălăgean, Bull. Korean Math. Soc. 23 (1986), no.~2, 133--140. MR0888224. Zbl 0623.30013.

  5. S. Porwal, Starlike and convex type probability distribution, Afr. Mat. 30 (2019), no.~7-8, 1049--1066. MR4022268. Zbl 1463.60014

  6. M. S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), no.~2, 374--408. MR1503286. Zbl 0014.16505.

  7. G. Sălăgean, Subclasses of univalent functions, in Complex analysis---fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1983), 362--372, Lecture Notes in Math., 1013, Springer, Berlin. MR0738107. Zbl 0531.30009.

  8. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109--116. MR1161650. Zbl 0311.30007.

  9. K. Swarup, P.K. Gupta and M. Mohan, Operations research, Sultan Chand and Sons, New Delhi, India, 2003.



Saurabh Porwal
Department of Mathematics,
Ram Sahai Government Degree College,
Bairi Shivrajpur-Kanpur-209205, (U.P.), India.
e-mail: saurabhjcb@rediffmail.com
https://orcid.org/0000-0003-0847-3550


Nanjundan Magesh
Post-Graduate and Research Department of Mathematics,
Govt Arts College (Men),
Krishnagiri - 635 001, Tamilnadu, India.
e-mail: nmagi_2000@yahoo.co.in
ttps://orcid.org/0000-0002-0764-8390

http://www.utgjiu.ro/math/sma