Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 17 (2022), 305 -- 332
This work is licensed under a Creative Commons Attribution 4.0 International License.NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS USING DAUBECHIES FILTER WITH ACCURACY ORDER SIX
Athira Babu and Noufal Asharaf
Abstract. This article considers the representation of differentiation operators using Daubechies wavelets to solve PDEs numerically. Derivative approximation using this compactly supported wavelets convert the action into a matrix multiplication. The vanishing moments, dilation equation and quadrature formulas play a significant role in the scheme. The computed solution of the PDEs seems to behave better than the results reported in the literature, and we could progress the solution up to a large time-bound. We experimented with Daubechies wavelet filters with six vanishing moments on test problems and summarised the results.
2020 Mathematics Subject Classification: 65M22; 35L10
Keywords: Daubechies wavelet; Differentiation operator; Burgers' equation; Telegraph equation
References
F. Abramovich, T. C. Bailey, and T. Sapatinas, Wavelet analysis and its statistical applications, Journal of the Royal Statistical Society: Series D (The Statistician), 49.1 (2000), 1-29.
A. Antoniadis, Wavelets in statistics: a review, Journal of the Italian Statistical Society, 6.2 (1997), 97-130. Zbl 1454.62113.
E. Ashpazzadeh, B. Han, and M. Lakestani, Biorthogonal multiwavelets on the interval for numerical solutions of burgers’ equation, Journal of Computational and Applied Mathematics, 317 (2017), 510-534. MR3606093. Zbl 1357.65182.
A. Babu, B. Han, and N. Asharaf, Numerical solution of the viscous burgers’ equation using localized differential quadrature method, Partial Differential Equations in Applied Mathematics, 2021, 100044.
A. Babu, B. Han, and N. Asharaf, Numerical solution of the hyperbolic telegraph equation using cubic b-spline-based differential quadrature of high accuracy, Computational Methods for Differential Equations, 2022.
G. Bachmann, L. Narici, and E. Beckenstein, Fourier and wavelet analysis, Springer Science & Business Media, 2012.
J. B. J. baron Fourier. Théorie analytique de la chaleur. Chez Firmin Didot, père et fils, 1822. Zbl 1410.01031.
G. Beylkin, On the representation of operators in bases of compactly supported wavelets, SIAM Journal on Numerical Analysis, 29.6 (1992), 1716-1740. MR1191143. Zbl 0766.65007.
C. K. Chui, J. M. Lemm, S. Sedigh, An introduction to wavelets, Academic press, 1992. MR1150048. Zbl 0925.42016.
I. Daubechies, Ten lectures on wavelets. Society for industrial and applied mathematics, 1992. MR1162107 Zbl 0776.42018.
I. Daubechies, Fundamental papers in wavelet theory, Princeton University Press, 2006. MR2229251. Zbl 1113.42001.
I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, Princeton University Press, 2009, 442-486. MR1066587. Zbl 0738.94004.
I. Daubechies, Orthonormal bases of compactly supported wavelets, Fundamental Papers in Wavelet Theory. Princeton University Press, 2009, 564-652. MR0951745. Zbl 0644.42026.
M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numerical Methods for Partial Differential Equations: An International Journal, 24.4 (2008), 1080-1093. MR2419709. Zbl 1145.65078.
M. Dehghan, B. N. Saray, and M. Lakestani. Mixed finite difference and galerkin methods for solving burgers equations using interpolating scaling functions, Mathematical Methods in the Applied Sciences, 37.6 (2014), 894-912. MR3188534. Zbl 1417.37271
J. J. Fournier and W. M. Self, Some sufficient conditions for uniform convergence of fourier series, Journal of mathematical analysis and applications, 126.2 (1987), 355-374. MR0900753. Zbl 0639.42002.
M. W. Frazier, An introduction to wavelets through linear algebra, Springer Science & Business Media, 2006. MR1692229. Zbl 0968.42021.
D. Gabor, Theory of communication. part 1: The analysis of information, Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93.26 (1946), 429-441.
D. Gabor, Theory of communication. part 2: The analysis of hearing, Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93.26 (1946), 442-445.
L. Grafakos, Classical fourier analysis, Springer, 2008. MR2445437. Zbl 1220.42001.
A. Grossmann and J. Morlet, Decomposition of hardy functions into square integrable wavelets of constant shape, SIAM journal on mathematical analysis, 15.4 (1984), 723-736. MR0747432. Zbl 0578.42007.
A. Haar, Zur theorie der orthogonalen funktionensysteme, Mathematische Annalen, 69.3 (1910), 331-371. MR1511592. JFM 42.0433.01.
M. A. Hajji, S. Melkonian, and R. Vaillancourt, Representation of differential operators in wavelet basis, Computers & Mathematics with Applications, 47.6-7 (2004), 1011-1033. MR2060333. Zbl 1075.47028.
C. E. Jacobs, A. Finkelstein, and D. H. Salesin, Fast multiresolution image querying, Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 1995, 277--286.
S. Jaffard, P. Lemarie, S. Mallat, and Y. Meyer. Multiscale analysis, manuscript, 24pp, 1986.
L. Jameson, The differentiation matrix for daubechies-based wavelets on an interval, SIAM Journal on Scientific Computing, 17.2 (1996), 498-516. MR1374293. Zbl 0848.65008.
C. Jordan, Sur la series de fourier. CR Acad. Sci., Paris, 92 (1881), 228-230. JFM 13.0184.01.
A. Khater, R. Temsah, and M. Hassan, A chebyshev spectral collocation method for solving burgers’-type equations. Journal of Computational and Applied Mathematics, 222.2 (2008), 333-350. MR2474624. Zbl 1153.65102.
T. H. Koornwinder, \newblock Wavelets: an elementary treatment of theory and applications, World Scientific, 1993. MR1238551. Zbl 0832.00013.
S. V. Kozyrev, Wavelet theory as p-adic spectral analysis, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 66.2 (2002), 149-158. MR1918846. Zbl 1016.42025.
D. T. L. Lee and A. Yamamoto, Wavelet analysis: theory and applications, Hewlett Packard journal, 45 (1994), 44-44.
G. Lejeune Dirichlet, Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données, 1829, 157-169.
P. G. Lemarié-Rieusset and Y. Meyer, Ondelettes et bases hilbertiennes, Revista Matematica Iberoamericana, 2.1 (1986), 1-18. MR0864650. Zbl 0657.42028.
J. Liu, H. Ma, Y.Y. Tang, and L. Yang Wavelet theory and its application to pattern recognition, World Scientific, 2000. MR1830592. Zbl 0969.68133.
S. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the American mathematical society, 315.1 (1989), 69-87. MR1008470. Zbl 0686.42018.
S. Mallat, A wavelet tour of signal processing, Elsevier, 1999. MR1614527. Zbl 0998.94510.
S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, Fundamental Papers in Wavelet Theory, Princeton University Press, 2009, 494-513.
P. Meerwald and A. Uhl, Survey of wavelet-domain watermarking algorithms, Security and Watermarking of Multimedia Contents III, International Society for Optics and Photonics, 2001, 505-516.
Y. Meyer, Principe d’incertitude, bases hilbertiennes et algebres d’operateurs, Séminaire Bourbaki, 662 (1985), 1985-1986. MR0880034. Zbl 0648.42011.
Y. Meyer, Ondelettes et fonctions splines, Séminaire Équations aux dérivées partielles (Polytechnique), (1986), 1-18. MR0920024. Zbl 0642.46028
Y. Meyer, Wavelets and Operators: Volume 1, Cambridge university press, 1992. MR1228209. Zbl 0776.42019.
R. Mittal and R. Jain, Numerical solutions of nonlinear burgers’ equation with modified cubic b-splines collocation method, Applied Mathematics and Computation, 218.15 (2012), 7839-7855. MR2900117. Zbl 1242.65209.
R. Mittal and R. Bhatia, Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic b-spline collocation method, Applied Mathematics and Computation, 220 (2013), 496-506. MR3091875. Zbl 1329.65237.
P. A. Morettin, From fourier to wavelet analysis of time series, COMPSTAT. Physica-Verlag HD, 1996. MR1602260. Zbl 0900.62471.
P. A. Morettin, Wavelets in statistics, Resenhas do Instituto de Matemática e Estat\istica da Universidade de São Paulo, 3.2 (1997), 211-272. MR1601908. Zbl 1092.62527.
R. Mokhtari, A. S. Toodar, and N. Chegini. \newblock Application of the generalized differential quadrature method in solving burgers' equations. \newblock Communications in Theoretical Physics, 56.6 (2011), 1009. MR2952680. Zbl 1247.35108.
G. P. Nason and R. Sachs, Wavelets in time-series analysis, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357.1760 (1999), 2511-2526. MR1721223. Zbl 1054.62583.
R. T. Ogden, Essential wavelets for statistical applications and data analysis. Boston: Birkhauser, 1997. MR1420193. Zbl 0868.62033.
L. Prasad and S. S. Iyengar, Wavelet analysis with applications to image processing, CRC press, 1997.
J. Price and I. Sloan, Pointwise convergence of multiple fourier series: sufficient conditions and an application to numerical integration, Journal of mathematical analysis and applications, 169.1 (1992), 140-156. MR1180678. Zbl 0799.42006.
K. Rahman, N. Helil, and R. Yimin. Some new semi-implicit finite difference schemes for numerical solution of burgers equation. 2010 international conference on computer application and system modeling (ICCASM 2010), IEEE, 2010.
D. K. Ruch and P. J. Van Fleet. Wavelet theory: an elementary approach with applications, John Wiley & Sons, 2011. Zbl 1200.94001.
R. J. Spiteri and S. J. Ruuth, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM Journal on Numerical Analysis, 40.2 (2002), 469-491. MR1921666. Zbl 1020.65064.
G. Strang, Wavelets and dilation equations: A brief introduction, SIAM review, 31.4 (1989), 614-627. MR1025484. Zbl 0683.42030.
G. Strang, Wavelet transforms versus fourier transforms, Bulletin of the American Mathematical Society, 28.2 (1993), 288-305. MR1191480. Zbl 0771.42021.
M. Talagrand, Necessary and sufficient conditions for sample continuity of random fourier series and of harmonic infinitely divisible processes, The Annals of Probability, 1992, 1-28. MR1143410. Zbl 0790.60039.
S. Tikhonov, On L1-convergence of fourier series, Journal of mathematical analysis and applications, 347.2 (2008), 416-427.
R. M. Trigub, Absolute convergence of fourier integrals, summability of fourier series, and polynomial approximation of functions on the torus, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 44.6 (1980), 1378-1409. MR0603581. Zbl 0478.42003.
P. P. Vaidyanathan, Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial, Proceedings of the IEEE, 78.1 (1990), 56-93.
B. Vidakovic, Statistical modeling by wavelets, John Wiley & Sons, 1999. MR1681904. Zbl 0924.62032.
J. S. Walker, A primer on wavelets and their scientific applications, CRC press, 2008. MR2400818. Zbl 1138.94003.
P. Wojtaszczyk, A mathematical introduction to wavelets, Cambridge University Press, 1997. MR1436437. Zbl 0865.42026.
R. K. Young, Wavelet theory and its applications, Springer Science & Business Media, 2012. MR1256490
Athira Babu
Cochin University of Science and Technology
Kerala-682022, India.
Noufal Asharaf
Cochin University of Science and Technology
Kerala-682022, India.
e-mail: noufal@cusat.ac.in
Dr. Noufal Asharaf