Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 17 (2022), 345 -- 356
This work is licensed under a Creative Commons Attribution 4.0 International License.ON SPECTRALLY FINITE FRÉCHET ALGEBRAS
D. El Boukasmi and A. El Kinani
Abstract. We show that a spectrally finite Fréchet algebra is finite-dimensional modulo its Jacobson radical. If moreover, the algebra has no nonzero quasi-nilpotent elements, then it is\ semi-simple and commutative and so isomorphic to ℂn for an integer n∈ ℕ.
2020 Mathematics Subject Classification: 46H05, 46H20.
Keywords: Spectrally finite algebra, Jacobson radical, Algebraic algebra, Finite dimensional algebra, Semi-simple algebra, Q-algebra, l.m.c.a., Fréchet algebra, Baire space.
References
Arosio, A., Locally convex inductive limits of normed algebras. Rend. Sem. Mat. Univ. Padova 51 (1974), 333-359(1975). MR0377515. Zbl 0301.46037.
Bourbaki, N., Espaces vectoriels topologiques. Chapitres 1 à 5. Masson, Paris, 1981. MR203425. Zbl 1106.46003.
Bourbaki, N., Algèbre commutative, élèments de mathématique. Chapitres 1 à 4. Reprint. Masson, Paris, 1985. MR782296. Zbl 1103.13001.
Bourbaki, N., Élèments de mathématiques. Théories spectrales. Chapitres 1 et 2. Springer, 2019. MR4301385. Zbl 1417.46001.
Dixon, P. G., Locally finite Banach algebras. J. London Math. Soc. (2) 8 (1974), 325-328. MR0348498. Zbl 0283.46024.
El Kinani, A., Oudadess, M., m-convex properties in locally convex algebras. Bull. Belg. Math. Soc. Simon Stevin 7 (2000), no. 2, 285-290. MR1771563. Zbl 0977.46023.
Hirschfeld, R. A., Johnson, B. E., Spectral characterization of finite-dimensional algebras. Nederl. Akad. Wetensch. Proc. Ser. A 75=Indag. Math. 34 (1972), 19-23. MR301508. Zbl 0232.46043.
Jacobson, N., Structure theory for algebraic algebras of bounded degree . Ann. of Math. (2) 46 (1945), 695-707. MR14083. Zbl 0060.07501.
Kaplansky, I., Ring isomorphisms of Banach algebras. Canad. J. Math. 6 (1954), 374-381. MR62960. Zbl 0058.10505.
Köthe, G., Topological Vector Spaces I. Band 159 Springer-Verlag . New York, Inc., New York 1996. Second MR0248498. Zbl 0179.17001.
Michael, E. A., Locally multiplicatively convex topological algebra. Mem. Amer. Math. Soc. 11, Providence (1952). MR0051444. Zbl 0047.35502.
Palmer, T. W., Banach algebras and the general theory of * -algebras. Vol. I. Algebras and Banach algebras. Encyclopedia of Mathematics and its Applications 49. Cambridge University Press, Cambridge, 1994. MR1270014. Zbl 0809.46052.
Rickart, C. E., General theory of Banach algebras. Van Nostrand, New York, (1960). MR0115101. Zbl 0095.09702.
Williamson, J. H., On topologising the field C(t). Proc. Amer. Math. Soc. 5 (1954), 729-734. MR63574. Zbl 0056.10403.
\.Zelazko, W., On maximal ideals in commutative m-convex algebras. Studia Math. 58 (1976), no. 3, 291-298. MR435852. Zbl 0344.46103.
D.El Boukasmi
Université Mohammed V de Rabat, E.N.S de Rabat, B. P. 5118, 10105,
Rabat, Maroc.
email: ddriss6@gmail.com
A.El Kinani
Université Mohammed V de Rabat, E.N.S de Rabat, B. P. 5118, 10105,
Rabat, Maroc.
e-mail: abdellah.elkinani@um5.ac.ma