Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 17 (2022), 397 -- 429

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

COMPARISON THEOREMS FOR KAN, FAINTLY UNIVERSAL AND STRONGLY UNIVERSAL DERIVED FUNCTORS

Alisa Govzmann, Damjan Pištalo and Norbert Poncin

Abstract. We distinguish between faint, weak, strong and strict localizations of categories at morphism families and show that this framework captures the different types of derived functors that are considered in the literature. More precisely, we show that Kan and faint derived functors coincide when we use the classical Kan homotopy category, and when we use the Quillen homotopy category, Kan and strong derived functors coincide. Our comparison results are based on the fact that the Kan homotopy category is a weak localization and that the Quillen homotopy category is a strict localization.

2020 Mathematics Subject Classification: 18E35; 18N40; 14A30
Keywords: Localization, model category, homotopy category, derived functor

Full text

References

  1. Beilinson A, Drinfeld V, Chiral algebras, American Mathematical Society Colloquium Publications, v. 51, American Mathematical Society, Providence, RI, 2004, pp. vi+375. MR2058353. Zbl 1138.17300.

  2. Bruce A, Ibarguengoytia E, Poncin N, The Schwarz-Voronov embedding of ℤ2n-manifolds, SIGMA, 16(002), 2020, pp. 47. MR4048632. Zbl 1433.58011.

  3. Bruce A, Ibarguengoytia E, Poncin N, Linear ℤ2n-manifolds and linear actions, SIGMA, 17, 2021, pp. 58. MR4272922. Zbl 1477.58004.

  4. Costello K, Gwilliam O, Factorization Algebras in Quantum Field Theory, Volume 1, Cambridge University Press, New Mathematical Monographs, 31, 2016. MR3586504. Zbl 1377.81004.

  5. Di Brino G, Pistalo D, Poncin N, Koszul-Tate resolutions as cofibrant replacements of algebras over differential operators, Journal of Homotopy and Related Structures, 13(4), 2018, pp. 793--846. MR3870773. Zbl 1423.18056.

  6. Di Brino G, PiℑD, Poncin N, Homotopical algebraic context over differential operators, Journal of Homotopy and Related Structures, 14(1), 2019, pp. 293--347. MR3913977. Zbl 07055732.

  7. Covolo T, Ovsienko V, Poncin N, Higher trace and Berezinian of matrices over a Clifford algebra, J. Geom. Phys, 62(11), 2012, pp. 2294--2319. MR2964662. Zbl 1308.15023.

  8. Covolo T, Grabowski J, Poncin N, The category of \Z2n-supermanifolds, J. Math. Phys., 57(7), 2016, 16 pp. MR3522262. Zbl 1345.58003.

  9. Covolo T, Kwok S, Poncin N, Local forms of morphisms of colored supermanifolds, J. Geom. Phys., 2021, \tt doi.org/10.1016/j.geomphys.2021.104302. MR4273073. Zbl 1478.58004.

  10. Dwyer W G, Spaliński J, Homotopy theories and model categories in Handbook of algebraic topology, Amsterdam, North-Holland, 1995, pp. 73--126. MR1361887. Zbl 0869.55018.

  11. Gabriel P, Zisman M, Calculus of Fractions and Homotopy Theory, Springer, Berlin, 1966. MR0210125. Zbl 0186.56802.

  12. Govzmann A, PiℑD, Poncin N, Indeterminacies and models of homotopy limits, \tt https://orbilu.uni.lu/handle/10993/47840, to appear.

  13. Govzmann A, PiℑD, Poncin N, A new approach to model categorical homotopy fiber sequences, Dissertationes Mathematicae, IMPAN, 2022, 57 pages, \tt doi: 10.4064/dm858-\tt 5-2022.

  14. Hirschhorn P S, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003, pp. xvi+457. MR1944041. Zbl 1017.55001.

  15. Hovey M, Model categories, Mathematical Surveys and Monographs, v. 63, American Mathematical Society, Providence, RI, 1999, pp. xii+209. MR1650134. Zbl 0909.55001.

  16. Kashiwara M, Schapira P, Sheaves on Manifolds, Grundlehren der mathematischen Wissenschaften, 292, Springer-Verlag, 1990. MR1074006. Zbl 0709.18001.

  17. Lurie J, Higher Topos Theory, AM-170, Annals of Mathematics Studies, Princeton University Press, 2009, pp. 944. MR2522659. Zbl 1175.18001.

  18. Paugam F, Histories and observables in covariant field theory, J. Geom. Phys., 61(9), 2011, pp. 1675--1702. MR2813505. Zbl 1222.83160.

  19. Paugam F, Towards the mathematics of quantum Field theory, A Series of Modern Surveys in Mathematics, 59, Springer, 2014, pp. 487. MR3288201. Zbl 1287.81002.

  20. Pištalo D, Poncin N, On Koszul-Tate resolutions and Sullivan models, Dissertationes Mathematicae, 531, 2018. MR3870713. Zbl 1474.18037.

  21. Poncin N, Towards integration on colored supermanifolds, Banach Center Publ., 110, 2016, pp 201--217. MR3642399. Zbl 1416.58002.

  22. Quillen D, Homotopical algebra, Lecture Notes in Mathematics, 43, Springer-Verlag, 1967. MR0223432. Zbl 0168.20903.

  23. Toën B, Vezzosi G, Homotopical algebraic geometry I, Topos theory, Adv. Math., v. 193(2), 2005, pp. 257-372. MR2137288. Zbl 1120.14012.

  24. Toën B, Vezzosi G, Homotopical algebraic geometry II, Geometric stacks and applications, Mem. Amer. Math. Soc., v. 193(902), 2008, pp. x+224. MR2394633. Zbl 1145.14003.

  25. Vinogradov A M, Cohomological analysis of Partial Differential Equations and Secondary Calculus, Transl. Math. Monographs, 204, AMS, Providence, RI, 2001, pp. 247. MR1857908. Zbl 1152.58308.



Alisa Govzmann
University of Luxembourg,
6, Avenue de la Fonte,
L-4364 Esch-sur-Alzette, Luxemburg.
e-mail: alisa.govzmann@uni.lu


Damjan Pištalo
University of Luxembourg,
6, Avenue de la Fonte,
L-4364 Esch-sur-Alzette, Luxemburg.
e-mail: damjan.pistalo@uni.lu


Norbert Poncin
University of Luxembourg,
6, Avenue de la Fonte,
L-4364 Esch-sur-Alzette, Luxemburg.
e-mail: norbert.poncin@uni.lu



http://www.utgjiu.ro/math/sma