Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 17 (2022), 431 -- 445
This work is licensed under a Creative Commons Attribution 4.0 International License.APPLICATION OF THE LITTLEWOOD-PALEY METHOD TO CALDERON-ZYGMUND OPERATORS
Mykola Yaremenko
Abstract. In this article, we establish the conditions for the pseudo-differential operator T under which this operator can be represented in convolution form with the singular kernel that satisfies |∂ xα ∂ zβ k(x,z)| ≤ Aβα(L)|z|-l-m-|β |-L for all z ≠ 0, and all multi-indices α, β and L ≥ 0 such that l+m+|β |+L > 0. Also, applying the Littlewood-Paley method, we show the inverse: if a is a symbol such that |∂ xα ∂ ξβ a(x,ξ )| ≤ Aβα(1-|ξ |)(|β |-|α |)δ for some 0 ≤ δ <1, then T(g)(x)= ⟨a(x, ●)ĝ(●)exp(2π ix ●)⟩ defines a bounded pseudo-differential operator L2(Rl) ↦ L2(Rl).
We establish the necessary and sufficient conditions on the kernel K under which there exists a bounded operator T : L2 (Rl) → L2 (Rl). Finally, we establish the necessary and sufficient conditions in terms of the operator T : Lp(Rl) → Lp(Rl) under which a nonnegative Borel measure μ is absolutely continuous dμ (x)=ω(x)dx ω ∈ Ap.2020 Mathematics Subject Classification: 46B70, 43A15, 43A22, 44A05, 44A10, 44A45.
Keywords: harmonic analysis, singular integrals, Littlewood-Paley method, Calderon-Zygmund operator, dyadic decomposition.
References
E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2007),285-320. MR2286632. Zbl 1113.35105.
A. Beni, K. Grochenig, K.A. Okoudjou, L.G. Rogers, Unimodular Fourier multiplier for modulation spaces, J. Funct. Anal. 246(2007) ,366--384. MR2321047. Zbl 1120.42010.
A. P. Calderon, A.Zygmund, On the existence of certain singular integrals,Acta Math. 88(1952),85--139. MR52553. Zbl 0047.10201.
L. A. Cafarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. 130(1989), no. 1, 189--213. MR1005611. Zbl 0692.35017.
L. A. Cafarelli,I. Peral, On W1,p estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51(1998), no. 1, 1--21. MR1486629. Zbl 0906.35030.
X. Changwei, Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds, J. Funct. Anal. 275(2018),No. 12, 3245--3258. MR3864501. Zbl 1401.35225.
J. Chou J, X. Li, Y. Tong, H. Lin, Generalized weighted Morrey spaces on RD-spaces, Rocky Mountain J. Math. 50(2020), No. 4, 1277--1293. MR4154807. Zbl 1444.42021.
D. Cruz-Uribe, A. Fiorenza, Weighted endpoint estimates for commutators of fractional integrals, Czechoslovak Math. J. 57(2007), No. 1, 153--160. MR2990181. Zbl 1174.42013.
T. Iwabuchi, Navier-Stokes equations, and nonlinear heat equations in modulation spaces with negative derivative indices, J. Differential Equations, 248(2010), No. 8,1972--2002. MR3086672. Zbl 1185.35166.
Y. Liang, D. Luong, D. Yang, Weighted endpoint estimates for commutators of Calderon-Zygmund operators, Proc. Amer. Math. Soc. 144(2016), No.12, 5171-5181. MR3556262. Zbl 1354.42023.
G. Lu, Parameter Marcinkiewicz integral and its commutator on generalized Orlicz-Morrey spaces, J. Korean Math. Soc. 58(2021), No.2, 383-400. MR4221571. Zbl 1468.42017.
G. Lu, S. Tao, Two classes of bilinear fractional integral operators and their commutators on generalized fractional Morrey spaces, J. Pseudo-Differ. Oper. Appl. 12(2021), No. 52, 1-24. MR4320527. Zbl 1480.42021.
E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30, Princeton University Press,1970. MR0290095. Zbl 0207.13501.
Y. Tan, L. Liu, Weighted boundedness of multilinear operator associated to a singular integral operator with variable Calderon-Zygmund kernel, Rev. R. Acad. Cienc. Exactas F-s. Nat. Ser. A Mat. RACSAM 111(2017), 931-946. MR3690067. Zbl 1374.42024.
B. Wang, Z. Huo, C. Hao, Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations I, Hackensack, NJ: World Scientific,2011. MR2848761. Zbl 1254.35002.
F.Y. Wang, Distribution dependent SDEs for Landau type equations, Stochastic Processes and their Applications, 128(2018), No. 2, 595--621. MR3739509. Zbl 1380.60077.
P. Xia, L. Xie, X. Zhang, G. Zhao, Lq(Lp)-theory of stochastic differential equations, Stochastic Processes Appl. 130(2020), No. 8, 5188-5211. MR4108486. Zbl 1456.60153.
X. Zhang, Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients Electronic Journal of Probability, 16(2011), No.16, 1096--1116. MR2820071. Zbl 1225.60099.
X. Zhang, G. Zhao, Singular Brownian diffusion processes, Communications in Mathematics and Statistics, 6(2018), No. 4, 533--581. MR3877717. Zbl 1404.60087.
X. Zhang, G. Zhao, Stochastic Lagrangian path for Leray's solutions of 3D Navier-Stokes equations,Comm. Math. Phys. 381(2021), No.2, 491--525. MR4207449. Zbl 1475.60129.
Mykola Yaremenko
Department of Differential Equations, The National Technical University of Ukraine,
"Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.
email: math.kiev@gmail.com