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APPLICATION OF THE LITTLEWOOD-PALEY
METHOD TO CALDERON-ZYGMUND
OPERATORS

Mykola Yaremenko

Abstract. In this article, we establish the conditions for the pseudo-differential operator T'
under which this operator can be represented in convolution form with the singular kernel that
satisfies |8§‘8§k(m,z)| < Apa (L) |2|77™71P17E for all z # 0, and all multi-indices a, 8 and L > 0
such that I +m+ |3| + L > 0. Also, applying the Littlewood-Paley method, we show the inverse: if

a is a symbol such that Bg‘aga(a:,@’ < Apga (1= [€))1PI719D9 for some 0 < 6 < 1, then T (f) (z) =

<a (z, ) f(-)exp (2m':c~)> defines a bounded pseudo-differential operator L* (R') — L? (R').

We establish the necessary and sufficient conditions on the kernel K under which there exists
a bounded operator T : L? (Rl) — L? (Rl). Finally, we establish the necessary and sufficient
conditions in terms of the operator 7' : L* (Rl) — L? (Rl) under which a nonnegative Borel

measure p is absolutely continuous du (z) = w (z) dz w € Ap.

1 Introduction and discussion of the subject

The main object of research in harmonic analysis is linear operators that satisfy
the Calderon-Zygmund conditions. The Calderon-Zygmund operator 1" is a linear
operator defined by the singular integral with the kernel K (x,y) in the form

T(f)(x) = [ K (z,y) f(y) duly) =
= (K (z,) f ()i

for fe S (Rl), where p is a Borel measure on the Borel o-algebra of R'.

The integral kernel K (-, ) € L}, (R' x R\ {(z,z) : = € R'}) is singular near
x = y and satisfies the following conditions:

growth condition one

(1.1)

K (z,y)] < Az —y[™ (1.2)
growth condition two for all |z — #| < % |z — y| we have
K (2,y) = K (&,9)] < Ale =& |z =y~ (1.3)
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432 M. Yaremenko

and growth condition three for |y — | < 1 |z — y| we have
K (2,y) — K (z,9)| < Aly =" |z —y| 77 (1.4)

for some 0 < v < 1 and positive constant A.

The first works which considered properties of operators (1.1) that satisfy (1.2)-
(1.3) conditions were published in the 1950s by A.P. Calderon and A. Zygmund [4],
the main result establishes the boundness of operators given by singular integrals
(1.1) in LP space of real variables. Some new information can be found in [1-
19], so W. Li and Q. Xue studied the multilinear case of the Calderon-Zygmund
operator and established its boundedness in the space with weights [14]; in [7]
the generalized weighted Morrey spaces and the generalized weighted weak Morrey
spaces are considered, and authors studied the Hardy—Littlewood maximal operator
and its application to the Calderon-Zygmund operator.

Let the operator T' be expressed by (1.1) then the operator T is defined by
three elements: the nonnegative Borel measure p with correspondent measurable
space, the singular kernel K (-, -) € L}, (R' x R\ {(z,z) : = € R'}) that satisfies
certain conditions, and the functional class on which the operator T is defined. The
specter of problems pertaining to 7' can concern each of the three elements or their
combination. So, assume that the operator T is well defined and bounded on the
functional space LY (Rl), p > 1 with the norm ||T||;, = A, and the kernel K
satisfies the estimation

[ K o)~ K (@ )l () < 4
B(y,C0)

for all gy € B (y,C#0), then the operator T' uniquely extends to the operator in all
Lp (Rl) , 1 < p < ¢q and remains bounded in the LP-norm.

In this article, we consider a classical approach to analytic constructs of the
problems of harmonic analysis of real-variable functions. The main object of our
investigation is the wide class of operators that satisfy certain conditions that are
usually called under the umbrella name “Calderon-Zygmund conditions”. There
are many ways to define such operators: first, the operator is given by integral
(1.1) with the singular kernel; second, by employing the Fourier transform, the
Calderon-Zygmund operator T' corresponds with the symbol a (x, £) according to
T(f)(x) = <a(x, Y f()exp (27m'x-)> where f = F(f) is a Fourier transform of
the function f; third, the operator can be defined as operator multiplication by
T(f)(€) = m(€)f(€) where T is the Fourier transform of 7. We study the
conditions under which the first and the second definitions determine the same
object and establish its properties. Theorems 3 and 7 deal with singular integrals and
measures in terms of weights, thus assuming we are interested in the LPfunctional
class, then for the operator T'(f) (z) = (K (z — ) f ()),,() With the kernel satisfying
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the theorem assumption, we establish the class of weights A, given by (2.1), (2.2),
which corresponds with measures for which the inequality

T (f) ()P du (y) < A / (F) ) da ()
Rl Rl

for all measures 4 (y) = w (y) dy when w € A,,.

2 Maximal operator

Let measure p be absolutely continuous respective Lebesgue measure with the
density w (z) so that dp(x) = w(x)dz, the class of weights A, consists of locally
integrable functions w such that the following inequality

1

(mes (B)) ™ (w) g (<MH>B)’H <A<oo (2.1)

or the same

(@) ((w7) )" < A7 (mes (B)™ (2.2)

holds for all balls B in R! and p4+q = pg, p > 1. The smallest constant A is called
the bound of w and is denoted by A, (w).

Lemma 1. Function w belongs to A, class if and only if there are some constants
¢ such that the following inequality

1 p
s (s 1408 < cmes (B (1P (2.3
holds for all balls B in R' and all locally integrable functions f on R'. The minimal
value of constant ¢ equals Ay (w).

Proof. Let du(z) = w(x)dz then application of the Holder equation yields
inequality

WD) < UfPwg (W05 )7 (2.4)

therefore we obtain the first statement of the lemma. To show the truth of the
reverse statement one can take f = (w+¢)' "7 in (2.3) and show that inequality
(2.1) holds for A < ¢ and for all ¢ > 0. Next, take the limit as ¢ — 0.

Definition 2. A mazimal operator M on R' is defined by

M (f) () = sup — If (x — y)| dy (2.5)

r>0 1" Jy|<r

for an arbitrary locally integrable function f.
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434 M. Yaremenko

The reverse Holder inequality yields the following statements.
Statement 1. Let f € L” (du(x)) and let du (z) = w (z) de where w € Apthen
the maximal operator has an estimation

(M ()P dpmwde = (M (F) ()P w () < ALF O w0 () (2.6)

Statement 2. Let the kernel K (z, y) satisfies conditions (1.2), (1.3), and (1.4)
with v = 1 then the inequality

sup
e>0

holds for all bounded functions f € L? (dz) with compact support and p € (1, co).
From statement 2 follows theorem 3.

) w(-)> SA(pw) (M (f)O)Pw()  (2.7)

/_ N K (- y) f(y)dy

Theorem 3. Let the operator T' be given by

T(f) (@)= (K(@=-)f() (2.8)

for all f € L?(dx). Let the kernel K satisfies conditions (1.2), (1.3), and
(1.4) with v =1 then we have an estimation

(T (f) O w () < A O w () (2.9)
for all functions f € L? (Rl), all weights w € A, , and all p € (1, c0).

The estimation (2.9) holds for all functions f € LP (R') and for all measures
dp (x) = w (z) dz in the form

T (f) ()P da (y) < A / () )P du (3).
Rl Rl

usually, firstly, we prove the estimation (2.9) for functions f € C* (Rl) with compact
supports then we employ the density of C§° (Rl) in LP (Rl) in the topology of the
LP- norm.

3 Pseudo-differential operators and Fourier transform

Let function a (x, &) be a symbol S™ of order m which means that a is a function of
Cc> (RQZ) and satisfies the following condition

anpf m—|p
970 a(x,8)| < Apy (1 +¢]) (3.1)
for all multi-indices a, S.
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The Fourier transform f of the function f is given by

f(&) = {f () exp (=2mig.)), (3.2)

mapping 71" defined by

T(f) (@) = (aa, ) f ()exp (2mia) ) (3.3)

is called the pseudo-differential operator of the function f.
The pseudo-differential operator T' can be presented in terms of the kernel by

T(f)(x) = (K (2,) f ()

with the appropriate kernel K.
Statement 3. Let a € S° and let mapping T be given by

T(f) (@) = (a(@, ) f (- exp 2ria) ) (3.4)

for all functions f € S (Rl), then mapping T extends to a bounded operator L? (Rl)
— L? (Rl), namely, the equality

1T (Pl e < Allfll e (3.5)

holds with the constant A and for all f € L? (Rl).

Proof can be found in standard work on harmonic analysis, the proof employs
the density of S (Rl) in L? (Rl) functional space.

We will use the notation k (z,z —y) = K (z,y) so that the pseudo-differential
operator can be presented in the form

T(f) (@) = (k(z,) f(z =),
the k (z,y) is a distribution for each fixed = such that
a (.%', 5) = <k (1‘, ) CeXp (_27”’5» :

Let a € S™. We are going to employ the Littlewood-Paley method to establish
the following estimation

O3k (x,2)| < Agy |27 (3.6)

that holds for all z # 0 for all multi-indices «, [ and all L > 0 such that [ +m +
5|+ L > 0.

sk sk sk ok sk ok sk s ok sk sk ok s ok sk sk ok sk sk sk ok sk sk sk s sk sk sk ok sk sk sk sk ok sk sk ok st ok sk sk ok sk ok sk sk ok sk sk sk ok sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk sk ok ok sk k

Surveys in Mathematics and its Applications 17 (2022), 431 — 445
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v17/v17.html
http://www.utgjiu.ro/math/sma

436 M. Yaremenko

4  Littlewood-Paley method

The Littlewood-Paley dyadic decomposition employs the representation of the function
as the composition of the functions with localized frequencies.

Let us fix a function n € C§° (R') such that n(¢) = 1, [{ < 1 and n(£) = 0,
|€| > 2; and let us define a function ¢ (§) =7 (§) —n(2£). We define the partitions
of unity by

1=+ Y w(27) v (4.1)
k=1,2,...
1= Y (2*’“5) £+ 0. (4.2)
k=—o00, 400

The difference operator is given by

Ap (f) = [ * (g — P-r41), (4.3)

where we put ¢ (z) = s7'¢ (f), (¢) = 1 and inverse Fourier transform b=mn.
Let function f satisfies the Lipschitz conditions then there exists a constant M
such that inequality
1Ak ()l e < M2, (4.4)

holds for the Lipschitz constant L.
The operator T can be represented as

T= Y T, (4.5)
n=0,1,...
where T, = TA,, and TAof =T (f % ¢).
Every operator T, is associated with a symbol a, (z,§) = a(z,&) ¢ (27"¢) and

ao (:I:7 f) =a (xa 5) n (6) for Tp.
The difference operators satisfy are almost projections, namely, they satisfy the
following condition
A, = A, (An,1 + A, + An+1) . (46)

We obtain the operator identity

I= > A, (4.7)

n=-—o00, +0o

Now, we consider the series

T (f) = Tn (An—l + An + An-i—l) f? (48)
n=0,1,...

where |[(Ap—1 + Ay + Api1) fll oo < M275L L is a Lipschitz coefficient.
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Since
102 Tn (An—1 4+ An 4+ Apt1) fll e < Ma2n(|m|+|a‘7”a (4.9)

we have

|85 3T (A + A+ A < M2, (4.10)

Next, we want to establish the following estimation

0202k (2,2)| < A, (L) o T IE

for all z # 0 for all multi-indices 5, ~ and all L > 0 such that [+m+ |3+ L > 0.
The kernel k (z, z) can be decomposed into the sum > o,  kn (2, 2) converging
for each z.
Statement 4. If the symbol a belongs to the class S™ then we have

0202k (w,2)| < Agy (M) |2 M 2n(HmHA=2D) (4.11)

for all o, B and M > 0.
The statement straightforward follows from the representation

(2miz)” 8%0%ky (z, 2) = <aT (2miz)? 9%y, (z, ) exp (27riz-)> L (412)

Assume |z| > 1 and choose M > [+ m + || — L then

2.

n=0,1,..

829k, (x, z)’ < Aga (M)O (|zy—M) (4.13)

for all |z| > 1, which can be estimated from above by O (|z|7(l+m+|m7”) with

arbitrary large L.
For all 0 < |2| <1, we divide the sum into two parts and estimate

ST 10008k (x,2)| < Aga (M) |2 3 gnEmHBI=A)

n=0,1,.. on< L

=]

+Aga (M) |27 Y 2nrmPI=AD,

=]

we take M = 0 in the first sum, and assume M > [+ m + || in the second sum, so
that, for 0 < |z| <1 we have

2.

n=0,1,..

070 kn (x, z)‘ <0 (\zl‘<l+m+\m—L>>

for all L.
So, we have obtained the following theorem.
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Theorem 4. Assume the pseudo-differential operator T defined by

T(f) (@) = (a(@, ) f () exp @ria) ) (4.14)

for all symbols a € S™ has integral representation with singular kernel
k(x,z) in the form

T(f)(x) = (k(z,) f(z =), (4.15)
then the integral kernel satisfies the estimation

0202k (z,2)| < Aga (L) 2|7 1PI7E (4.16)

for all z # 0, and for all multi-indices o, [ and all L. > 0 such that
I+m+|[B]+L>0.

From the Schwartz theorem, we obtain that for each symbol a € S (RQ") there
exists a kernel K (z, y) =k (z, z —y), K € S(R*) such that

T(f)(2) = {ale, ) f (Yexp (2niz) ) = (K (z, ) f (), (4.17)
the reverse is also true, each kernel K € S (RQ”) corresponds with the symbol
a€sS (RQ") so that Ty = T,.

5 Calderon-Zygmund operator in the
L?-space

Let kernel K (z, y) be defined for all  # y and let K satisfies the estimations
given by (1.2), (1.3), and (1.4) then K (x, y) satisfies the differential inequality

OCOPK (z,y)| < Apa |z — y| 7717 1A (5.1)

for all multi-indices v, (. The operators corresponded to the kernel K under the
condition (5.1) are not bounded in L2-space.

Theorem 5. Assume a symbol a satisfies the inequality

0200 (,€)| < Aga (1 — 1) P10 (5.2)
for 0 <6 < 1. Then operator

T (f) (@) = (ale, ) f () exp (2mia)) (5:3)
defined for all f € S extends to a bounded operator L* (Rl) > L2 (Rl).
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Proof. Let g be defined on R? a smooth function with compact support and
such that g (0,0) = 1. For all 0 < e < 1, we define the symbol a. (z,&) by

Qe (Cﬂ,f) =a (l‘,é) g (6$,6§) (54)

then for all f € S, we have that the set {T,_} of operators corresponding to kernels
ae converges to the operator T, as € — 0 in S-topology. Therefore, we can presume
that the symbol a has a compact support.

Applying the Littlewood-Paley method, we decompose T' into series

Tf= Y. Tuf=T({fx¢)+ Y, TA.S (5.5)
n=1,...

n=0,1,...

where each operator T), is associated with a symbol a, (x,£) = a(z,£) ¢ (277¢) is
supported on 271 < [¢] < 27F! and Ty associated with ag (7,&) = a(x,€)n(€)
supported on [£| < 2.

The sum (5.5) can be broken into two sums for even and for odd indices, the
&-support of each sum is disjoint.

Since, for odd indices n and k, the intersection of supports of A, and Ay is
empty, we have T, T = TA,A;T = 0 for n # k.

If the operator T*T is bounded in L? then the operator T is bounded in L?. So,
we can write

(T:To) (f) () =
—/ / / / ay, (z,v) an (2,8) exp (2mi (£ (2 —y) — v (2 — x))) dzdvdédy.
RrR'JR JR! JR!

Now, we remark that

(5.6)

(I — AN exp (2miz (v — €)) = (1 + 4n? v — 5]2>N exp (2miz (v —§)), (5.7)

using equality of (5.7) type, we integrate by parts first with the respect to z-variable
next to v and finally with the respect to &-variable. Applying estimation (5.2) and
boundedness of the supports, we obtain

| S S G (2,0) @ (2,€) exp (2mi (§ (2 — y) — v (2 — x))) dzdvdg| <
< 92max(k,n)((6—1)N+I) le (1 + ‘x _ z’)fZN (1 + ‘Z i y‘)fZN dz

for n # k. Let us denote
Jr J U |2 = Z!)*2N2(1 + 1z —y)) 7N dzdy =
- (le 1+ |2)~2N dz) —A

so, we obtain the estimation

||T]:TnH <A- 22max(k,n)((571)N+l)
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therefore ||T;T,|| < A-27%k27°" for all e > 0 and let N be larger than ﬁ so that
we have e = (1 - ) N — L.

The next step is to show that all || 7;,|| can be estimated by A from above. Using
the Littlewood-Paley method, we have a, (z,§) = a(x,£) ¢ (27"¢) and we denote
ap (2,€) = an (2_”533, 2”55). The symbol @, satisfies the inequality

0508 i (2,€)| < Aga (5.8)

for all indices n .

A straightforward calculation shows T,, = @nTnG; 1 where ©,, is a mapping

) nls _
defined by ©,, (f) () = f (2x). Since ||O (f)]l 2 =22 || fll 2 and ||©," (f)]|,2 =
913 | fll; 2, we have ||Tg|| < A. Repeated the same process for even indices we

obtain Hzn:O,l,...TnHLQ < 0o

Theorem 6. Assume kernel K satisfies conditions (1.2)-(1.4) then in order
to exist a bounded operator T : L? (Rl) — L? (Rl) it is necessary and
sufficient that there exists a constant A > 0 such that

2
/ / K (z, y)dy | dz < AN! (5.9)
le—Z|<N e<|z—y|<N

holds for all ¢ >0, N and elements & € R..

Proof. Applying the Littlewood-Paley method one can prove the following
statement: if the kernel K satisfies (1.2)-(1.4) conditions then for the existence of
the extension T' : L? (Rl) — L? (Rl) it is necessary and sufficient that operators T’
and T™ satisfy the conditions

|7 6) (52 < Ar' and 7 (0) (53] < v
for all Z, r, and where 0 is a normalized test function for a ball B (Z, r). The
constant A does not depend on Z, r or normalized test function 6.

First, we consider the necessity. We define an operator with a truncated kernel

K. (z,y) = { éf(x(fz’y Zs_ v (5.10)
by
T: (f) (x) = (K (2, ) £ () (5.11)

defined for all f € L? (Rl).
We denote the characteristic function of the ball {y : |y —Z| < N} by xzn so
we have an estimation

Jectomyien K (@, y) = Ke (2, y) Xa.v () dy| <
< Sy oy [K (2, y)l dy.
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Since every ball can be covered by balls of half its radius, it is enough to show that

2
/ / K (z, y)dy | dx < AN, (5.12)
|;r—5:|<% e<|z—y|<N

so that, for |z — | < & we have

<A

/ (K (2, 1) — Ke (2, 9) xav () dy
e<|z—y|<N

since T is bounded in L?, we obtain the necessity of the condition (5.9).
Now, we are going to prove sufficiency. We define

T (f) () = (K (2, -) f (1)) =
= (K (z, )¢ (=) f ()

where we denote K (z, y) = K (z, y) ¢ (=) and ¢ € C* (R') such that

1, jz|>1
Kg(l’, y):{ 0 lxI<%

Let 63 , be a normalized test function for a ball B (Z, r) then we have

T: (956, 1‘) (33) = <K€ (:U, ) ‘9:i, r ()) =
= [ Ke (2, y) (0z,» (y) — 0z, () Xa3r (y) dy+
03,1 () fp_yj<s, Ke (@, y) dy

for all |z — Z| < 2r. We estimate

’le KE (x7 y) (956, T (%) l_ ‘95:, r ($))3<x,3r (y) dy| <
< Af|x—y|§3r ly —x| rldy < A

and

< Const

/ K (z, y)dy — / K (z, y)dy
|z—y|<3r e<|z—y|<3r

From (5.12), we have
/ T2 (05.0) (2)]? dz < Ar!
|lz—Z|<2r

and the inequalities | T. (6z. )| ,» < Arz and || T (6z,,)|| 2 < Ar2 hold for all £ > 0
uniformly.
If we choose a countable set {e,} such that lim e, = 0 then we obtain
n—oo

L*weakly lim T. =T,
n—oo

and since K. (x,y) — K (z,y) pointwise, we have proven the statement of the
theorem.
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Theorem 7. For all f € L? (Rl), we define an operator T by

T(f)(x) = (K (z—=-)f() (5.13)
with the kernel K, which satisfies conditions (1.2), (1.3), and (1.4) where
v =1 . Then a nonnegative Borel measure p is absolutely continuous

dp(z) = w(z)dr and weight w belongs to class A, if and only if the
following inequality

T (F) )P dps () < A / () )P dp () (5.14)
R! R!

holds for all functions f € LP (Rl) .

Proof. The necessity is the consequence of theorem 3.

The set C§° (Rl) is dense in the LP (Rl) in topology of the LP- norm. So, we
assume f is a nonnegative function of C§° (Rl) with the support in the ball B (z, r)
with the radius r > 0.

We denote the balls By = B(Z +rz, r) and By = B(Z —rz, r) where z = rz,
x = ru, |u] < 2. Applying conditions on K, we obtain

2|K (r(z +u) = K(r(2)] < [K(r(2)],

we take x =2 +r <z+ E) andy=I+r 5 where we assume ‘E‘ <1 and ‘E/\‘ <1.

So, x —y =1 (2 + u), we note Lebesgue’s measure of B by mes (B), obtain that the
estimation

2|K * f|mes (B) > |K(7“Z)/Bf(v) dv

holds for all z € B;.
Presuming the estimation

. T (f) (W)IPdu(y) < A . ((f) W) du(y),
we have »
wen) ([ 1) < mesmya [ (nwya
and

0 (B) ( [ dv)p < (mes ()Y’ A [ (1)) v

The last two inequalities extend to all nonnegative functions with the support
in B. Taking f = xp,, we have u (B) < Ap (Bp) and therefore the estimation

we) ([ 1 dv)p < (mes (B 4 [ (1) )P do (5.15)
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holds for all nonnegative functions f € L? (Rl) and all balls B. Then a Borel
measure g is absolutely continuous relative to the Lebesgue measure dx so that
dp (z) = w (x) do where density w € A,,.
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