APPLICATION OF THE LITTLEWOOD-PALEY METHOD TO CALDERON-ZYGMUND OPERATORS

Mykola Yaremenko

Abstract

In this article, we establish the conditions for the pseudo-differential operator T under which this operator can be represented in convolution form with the singular kernel that satisfies $\left|\partial_{x}^{\alpha} \partial_{z}^{\beta} k(x, z)\right| \leq A_{\beta \alpha}(L)|z|^{-l-m-|\beta|-L}$ for all $z \neq 0$, and all multi-indices α, β and $L \geq 0$ such that $l+m+|\beta|+L>0$. Also, applying the Littlewood-Paley method, we show the inverse: if a is a symbol such that $\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq A_{\beta \alpha}(1-|\xi|)^{(|\beta|-|\alpha|) \delta}$ for some $0 \leq \delta<1$, then $T(f)(x)=$ $\langle a(x, \cdot) \hat{f}(\cdot) \exp (2 \pi i x \cdot)\rangle$ defines a bounded pseudo-differential operator $L^{2}\left(R^{l}\right) \mapsto L^{2}\left(R^{l}\right)$.

We establish the necessary and sufficient conditions on the kernel K under which there exists a bounded operator $T: L^{2}\left(R^{l}\right) \rightarrow L^{2}\left(R^{l}\right)$. Finally, we establish the necessary and sufficient conditions in terms of the operator $T: L^{p}\left(R^{l}\right) \rightarrow L^{p}\left(R^{l}\right)$ under which a nonnegative Borel measure μ is absolutely continuous $d \mu(x)=\omega(x) d x \omega \in A_{p}$.

1 Introduction and discussion of the subject

The main object of research in harmonic analysis is linear operators that satisfy the Calderon-Zygmund conditions. The Calderon-Zygmund operator T is a linear operator defined by the singular integral with the kernel $K(x, y)$ in the form

$$
\begin{align*}
& T(f)(x)=\int_{R^{l}} K(x, y) f(y) d \mu(y)= \\
& =\langle K(x, \cdot) f(\cdot)\rangle_{\mu(\cdot)} \tag{1.1}
\end{align*}
$$

for $f \in S\left(R^{l}\right)$, where μ is a Borel measure on the Borel σ-algebra of R^{l}.
The integral kernel $K(\cdot, \cdot) \in L_{l o c}^{1}\left(R^{l} \times R^{l} \backslash\left\{(x, x): x \in R^{l}\right\}\right)$ is singular near $x=y$ and satisfies the following conditions:
growth condition one

$$
\begin{equation*}
|K(x, y)| \leq A|x-y|^{-l} \tag{1.2}
\end{equation*}
$$

growth condition two for all $|x-\breve{x}| \leq \frac{1}{2}|x-y|$ we have

$$
\begin{equation*}
|K(x, y)-K(\breve{x}, y)| \leq A|x-\breve{x}|^{\gamma}|x-y|^{-l-\gamma} \tag{1.3}
\end{equation*}
$$

[^0]and growth condition three for $|y-\breve{y}| \leq \frac{1}{2}|x-y|$ we have
\[

$$
\begin{equation*}
|K(x, y)-K(x, \breve{y})| \leq A|y-\breve{y}|^{\gamma}|x-y|^{-l-\gamma} \tag{1.4}
\end{equation*}
$$

\]

for some $0<\gamma \leq 1$ and positive constant A.
The first works which considered properties of operators (1.1) that satisfy (1.2)(1.3) conditions were published in the 1950s by A.P. Calderon and A. Zygmund [4], the main result establishes the boundness of operators given by singular integrals (1.1) in L^{p} space of real variables. Some new information can be found in [119], so W. Li and Q. Xue studied the multilinear case of the Calderon-Zygmund operator and established its boundedness in the space with weights [14]; in [7] the generalized weighted Morrey spaces and the generalized weighted weak Morrey spaces are considered, and authors studied the Hardy-Littlewood maximal operator and its application to the Calderon-Zygmund operator.

Let the operator T be expressed by (1.1) then the operator T is defined by three elements: the nonnegative Borel measure μ with correspondent measurable space, the singular kernel $K(\cdot, \cdot) \in L_{l o c}^{1}\left(R^{l} \times R^{l} \backslash\left\{(x, x): x \in R^{l}\right\}\right)$ that satisfies certain conditions, and the functional class on which the operator T is defined. The specter of problems pertaining to T can concern each of the three elements or their combination. So, assume that the operator T is well defined and bounded on the functional space $L^{q}\left(R^{l}\right), \quad p>1$ with the norm $\|T\|_{L^{q}}=A$, and the kernel K satisfies the estimation

$$
\int_{\overline{B(y, C \theta)}}|K(x, y)-K(x, \tilde{y})| d \mu(x) \leq A
$$

for all $\tilde{y} \in B(y, C \theta)$, then the operator T uniquely extends to operator in all $L^{p}\left(R^{l}\right), \quad 1<p<q$ and remains bounded in the L^{p}-norm.

In this article, we consider a classical approach to analytic constructs of the problems of harmonic analysis of real-variable functions. The main object of our investigation is the wide class of operators that satisfy certain conditions that are usually called under the umbrella name "Calderon-Zygmund conditions". There are many ways to define such operators: first, the operator is given by integral (1.1) with the singular kernel; second, by employing the Fourier transform, the Calderon-Zygmund operator T corresponds with the symbol $a(x, \xi)$ according to $T(f)(x)=\langle a(x, \cdot) \hat{f}(\cdot) \exp (2 \pi i x \cdot)\rangle$ where $\hat{f}=F(f)$ is a Fourier transform of the function f; third, the operator can be defined as operator multiplication by $\hat{T}(f)(\xi)=m(\xi) \hat{f}(\xi)$ where \hat{T} is the Fourier transform of T. We study the conditions under which the first and the second definitions determine the same object and establish its properties. Theorems 3 and 7 deal with singular integrals and measures in terms of weights, thus assuming we are interested in the L^{p} functional class, then for the operator $T(f)(x)=\langle K(x-\cdot) f(\cdot)\rangle_{\mu(\cdot)}$ with the kernel satisfying
the theorem assumption, we establish the class of weights A_{p} given by (2.1), (2.2), which corresponds with measures for which the inequality

$$
\int_{R^{l}}|T(f)(y)|^{p} d \mu(y) \leq A \int_{R^{l}}|(f)(y)|^{p} d \mu(y)
$$

for all measures $\mu(y)=\omega(y) d y$ when $\omega \in A_{p}$.

2 Maximal operator

Let measure μ be absolutely continuous respective Lebesgue measure with the density $\omega(x)$ so that $d \mu(x)=\omega(x) d x$, the class of weights A_{p} consists of locally integrable functions ω such that the following inequality

$$
\begin{equation*}
(\operatorname{mes}(B))^{-p}\langle\omega\rangle_{B}\left(\left\langle\omega^{\frac{1}{1-p}}\right\rangle_{B}\right)^{p-1} \leq A<\infty \tag{2.1}
\end{equation*}
$$

or the same

$$
\begin{equation*}
\left(\langle\omega\rangle_{B}\right)^{q}\left(\left\langle\omega^{-\frac{q}{p}}\right\rangle_{B}\right)^{p} \leq A^{q}(\operatorname{mes}(B))^{p q} \tag{2.2}
\end{equation*}
$$

holds for all balls B in R^{l} and $p+q=p q, \quad p>1$. The smallest constant A is called the bound of ω and is denoted by $A_{p}(\omega)$.

Lemma 1. Function ω belongs to A_{p} class if and only if there are some constants c such that the following inequality

$$
\begin{equation*}
\left.\langle\omega\rangle_{B}\left(\frac{1}{\operatorname{mes}(B)}\langle | f| \rangle_{B}\right)^{p} \leq\left.\operatorname{cmes}(B)\langle | f\right|^{p} \omega\right\rangle_{B} \tag{2.3}
\end{equation*}
$$

holds for all balls B in R^{l} and all locally integrable functions f on R^{l}. The minimal value of constant c equals $A_{p}(\omega)$.

Proof. Let $d \mu(x)=\omega(x) d x$ then application of the Holder equation yields inequality

$$
\begin{equation*}
\left(\langle | f\left\rangle_{B}\right)^{p} \leq\left.\langle | f\right|^{p} \omega\right\rangle_{B}\left(\left\langle\omega^{1-q}\right\rangle_{B}\right)^{p-1} \tag{2.4}
\end{equation*}
$$

therefore we obtain the first statement of the lemma. To show the truth of the reverse statement one can take $f=(\omega+\varepsilon)^{1-q}$ in (2.3) and show that inequality (2.1) holds for $A \leq c$ and for all $\varepsilon>0$. Next, take the limit as $\varepsilon \rightarrow 0$.

Definition 2. A maximal operator M on R^{l} is defined by

$$
\begin{equation*}
M(f)(x)=\sup _{r>0} \frac{c_{l}}{r^{l}} \int_{|y| \leq r}|f(x-y)| d y \tag{2.5}
\end{equation*}
$$

for an arbitrary locally integrable function f.

The reverse Holder inequality yields the following statements.
Statement 1. Let $f \in L^{p}(d \mu(x))$ and let $d \mu(x)=\omega(x) d x$ where $\omega \in A_{p}$ then the maximal operator has an estimation

$$
\begin{equation*}
\left.\left\langle(M(f))^{p}\right\rangle_{d \mu=\omega d x}=\left\langle(M(f)(\cdot))^{p} \omega(\cdot)\right\rangle \leq\left. A\langle | f(\cdot)\right|^{p} \omega(\cdot)\right\rangle . \tag{2.6}
\end{equation*}
$$

Statement 2. Let the kernel $K(x, y)$ satisfies conditions (1.2), (1.3), and (1.4) with $\gamma=1$ then the inequality

$$
\begin{equation*}
\left\langle\left(\sup _{\varepsilon>0}\left|\int_{|--y|>\varepsilon} K(\cdot, y) f(y) d y\right|\right)^{p} \omega(\cdot)\right\rangle \leq A(p, \omega)\left\langle(M(f)(\cdot))^{p} \omega(\cdot)\right\rangle \tag{2.7}
\end{equation*}
$$

holds for all bounded functions $f \in L^{2}(d x)$ with compact support and $p \in(1, \infty)$.
From statement 2 follows theorem 3.
Theorem 3. Let the operator T be given by

$$
\begin{equation*}
T(f)(x)=\langle K(x-\cdot) f(\cdot)\rangle \tag{2.8}
\end{equation*}
$$

for all $f \in L^{2}(d x)$. Let the kernel K satisfies conditions (1.2), (1.3), and (1.4) with $\gamma=1$ then we have an estimation

$$
\begin{equation*}
\left.\left.\left.\langle | T(f)(\cdot)\right|^{p} \omega(\cdot)\right\rangle \leq\left. A\langle |(f)(\cdot)\right|^{p} \omega(\cdot)\right\rangle \tag{2.9}
\end{equation*}
$$

for all functions $f \in L^{2}\left(R^{l}\right)$, all weights $\omega \in A_{p}$, and all $p \in(1, \infty)$.
The estimation (2.9) holds for all functions $f \in L^{p}\left(R^{l}\right)$ and for all measures $d \mu(x)=\omega(x) d x$ in the form

$$
\int_{R^{l}}|T(f)(y)|^{p} d \mu(y) \leq A \int_{R^{l}}|(f)(y)|^{p} d \mu(y)
$$

usually, firstly, we prove the estimation (2.9) for functions $f \in C^{\infty}\left(R^{l}\right)$ with compact supports then we employ the density of $C_{0}^{\infty}\left(R^{l}\right)$ in $L^{p}\left(R^{l}\right)$ in the topology of the L^{p} - norm.

3 Pseudo-differential operators and Fourier transform

Let function $a(x, \xi)$ be a symbol S^{m} of order m which means that a is a function of $C^{\infty}\left(R^{2 l}\right)$ and satisfies the following condition

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq A_{\beta \gamma}(1+|\xi|)^{m-|\beta|} \tag{3.1}
\end{equation*}
$$

for all multi-indices $\alpha, \quad \beta$.

The Fourier transform \hat{f} of the function f is given by

$$
\begin{equation*}
\hat{f}(\xi)=\langle f(\cdot) \exp (-2 \pi i \xi \cdot)\rangle \tag{3.2}
\end{equation*}
$$

mapping T defined by

$$
\begin{equation*}
T(f)(x)=\langle a(x, \cdot) \hat{f}(\cdot) \exp (2 \pi i x \cdot)\rangle \tag{3.3}
\end{equation*}
$$

is called the pseudo-differential operator of the function f.
The pseudo-differential operator T can be presented in terms of the kernel by

$$
T(f)(x)=\langle K(x, \cdot) f(\cdot)\rangle
$$

with the appropriate kernel K.
Statement 3. Let $a \in S^{0}$ and let mapping T be given by

$$
\begin{equation*}
T(f)(x)=\langle a(x, \cdot) \hat{f}(\cdot) \exp (2 \pi i x \cdot)\rangle \tag{3.4}
\end{equation*}
$$

for all functions $f \in S\left(R^{l}\right)$, then mapping T extends to a bounded operator $L^{2}\left(R^{l}\right)$ $\mapsto L^{2}\left(R^{l}\right)$, namely, the equality

$$
\begin{equation*}
\|T(f)\|_{L^{2}} \leq A\|f\|_{L^{2}} \tag{3.5}
\end{equation*}
$$

holds with the constant A and for all $f \in L^{2}\left(R^{l}\right)$.
Proof can be found in standard work on harmonic analysis, the proof employs the density of $S\left(R^{l}\right)$ in $L^{2}\left(R^{l}\right)$ functional space.

We will use the notation $k(x, x-y)=K(x, y)$ so that the pseudo-differential operator can be presented in the form

$$
T(f)(x)=\langle k(x, \cdot) f(x-\cdot)\rangle
$$

the $k(x, y)$ is a distribution for each fixed x such that

$$
a(x, \xi)=\langle k(x, \cdot) \exp (-2 \pi i \xi \cdot)\rangle
$$

Let $a \in S^{m}$. We are going to employ the Littlewood-Paley method to establish the following estimation

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{z}^{\beta} k(x, z)\right| \leq A_{\beta \gamma}|z|^{-l-m-|\beta|-L} \tag{3.6}
\end{equation*}
$$

that holds for all $z \neq 0$ for all multi-indices $\alpha, \quad \beta$ and all $L \geq 0$ such that $l+m+$ $|\beta|+L>0$.

4 Littlewood-Paley method

The Littlewood-Paley dyadic decomposition employs the representation of the function as the composition of the functions with localized frequencies.

Let us fix a function $\eta \in C_{0}^{\infty}\left(R^{l}\right)$ such that $\eta(\xi)=1,|\xi| \leq 1$ and $\eta(\xi)=0$, $|\xi| \geq 2$; and let us define a function $\varphi(\xi)=\eta(\xi)-\eta(2 \xi)$. We define the partitions of unity by

$$
\begin{align*}
& 1=\eta(\xi)+\sum_{k=1,2, \ldots} \varphi\left(2^{-k} \xi\right) \quad \forall \xi, \tag{4.1}\\
& 1=\sum_{k=-\infty,+\infty} \varphi\left(2^{-k} \xi\right) \quad \xi \neq 0 . \tag{4.2}
\end{align*}
$$

The difference operator is given by

$$
\begin{equation*}
\Delta_{k}(f)=f *\left(\phi_{2^{-k}}-\phi_{2^{-k+1}}\right), \tag{4.3}
\end{equation*}
$$

where we put $\phi_{s}(x)=s^{-l} \phi\left(\frac{x}{s}\right),\langle\phi\rangle=1$ and inverse Fourier transform $\hat{\phi}=\eta$.
Let function f satisfies the Lipschitz conditions then there exists a constant M such that inequality

$$
\begin{equation*}
\left\|\Delta_{k}(f)\right\|_{L^{\infty}} \leq M 2^{-k L} \tag{4.4}
\end{equation*}
$$

holds for the Lipschitz constant L.
The operator T can be represented as

$$
\begin{equation*}
T=\sum_{n=0,1, \ldots} T_{n}, \tag{4.5}
\end{equation*}
$$

where $T_{n}=T \Delta_{n}$ and $T \Delta_{0} f=T(f * \phi)$.
Every operator T_{n} is associated with a symbol $a_{n}(x, \xi)=a(x, \xi) \varphi\left(2^{-n} \xi\right)$ and $a_{0}(x, \xi)=a(x, \xi) \eta(\xi)$ for T_{0}.

The difference operators satisfy are almost projections, namely, they satisfy the following condition

$$
\begin{equation*}
\Delta_{n}=\Delta_{n}\left(\Delta_{n-1}+\Delta_{n}+\Delta_{n+1}\right) . \tag{4.6}
\end{equation*}
$$

We obtain the operator identity

$$
\begin{equation*}
\mathrm{I}=\sum_{n=-\infty,+\infty} \Delta_{n} . \tag{4.7}
\end{equation*}
$$

Now, we consider the series

$$
\begin{equation*}
T(f)=\sum_{n=0,1, \ldots} T_{n}\left(\Delta_{n-1}+\Delta_{n}+\Delta_{n+1}\right) f, \tag{4.8}
\end{equation*}
$$

where $\left\|\left(\Delta_{n-1}+\Delta_{n}+\Delta_{n+1}\right) f\right\|_{L^{\infty}} \leq M 2^{-k L}, L$ is a Lipschitz coefficient.

Since

$$
\begin{equation*}
\left\|\partial_{x}^{\alpha} T_{n}\left(\Delta_{n-1}+\Delta_{n}+\Delta_{n+1}\right) f\right\|_{L^{\infty}} \leq M_{\alpha} 2^{n(|m|+|\alpha|-L)} \tag{4.9}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left\|\Delta_{j} \sum T_{n}\left(\Delta_{n-1}+\Delta_{n}+\Delta_{n+1}\right)\right\|_{L^{\infty}} \leq M 2^{j(m-L)} . \tag{4.10}
\end{equation*}
$$

Next, we want to establish the following estimation

$$
\left|\partial_{x}^{\alpha} \partial_{z}^{\beta} k(x, z)\right| \leq A_{\beta \gamma}(L)|z|^{-l-m-|\beta|-L}
$$

for all $z \neq 0$ for all multi-indices $\beta, \quad \gamma$ and all $L \geq 0$ such that $l+m+|\beta|+L>0$.
The kernel $k(x, z)$ can be decomposed into the sum $\sum_{n=0,1, \ldots} k_{n}(x, z)$ converging for each x.

Statement 4. If the symbol a belongs to the class S^{m} then we have

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{z}^{\beta} k_{n}(x, z)\right| \leq A_{\beta \gamma}(M)|z|^{-M} 2^{n(l+m+|\beta|-M)} \tag{4.11}
\end{equation*}
$$

for all $\alpha, \quad \beta$ and $M \geq 0$.
The statement straightforward follows from the representation

$$
\begin{equation*}
(2 \pi i z)^{\tau} \partial_{x}^{\alpha} \partial_{z}^{\beta} k_{n}(x, z)=\left\langle\partial^{\tau}(2 \pi i z)^{\beta} \partial_{x}^{\alpha} a_{n}(x, \cdot) \exp (2 \pi i z \cdot)\right\rangle . \tag{4.12}
\end{equation*}
$$

Assume $|z| \geq 1$ and choose $M>l+m+|\beta|-L$ then

$$
\begin{equation*}
\sum_{n=0,1, . .}\left|\partial_{x}^{\alpha} \partial_{z}^{\beta} k_{n}(x, z)\right| \leq A_{\beta \alpha}(M) O\left(|z|^{-M}\right) \tag{4.13}
\end{equation*}
$$

for all $|z| \geq 1$, which can be estimated from above by $O\left(|z|^{-(l+m+|\beta|-L)}\right)$ with arbitrary large L.

For all $0<|z| \leq 1$, we divide the sum into two parts and estimate

$$
\begin{gathered}
\sum_{n=0,1, \ldots}\left|\partial_{x}^{\alpha} \partial_{z}^{\beta} k_{n}(x, z)\right| \leq A_{\beta \alpha}(M)|z|^{-M} \sum_{2^{n} \leq \frac{1}{|z|}} 2^{n(l+m+|\beta|-M)}+ \\
\quad+A_{\beta \alpha}(M)|z|^{-M} \sum_{2^{n}>\frac{1}{|z|}} 2^{n(l+m+|\beta|-M)}
\end{gathered}
$$

we take $M=0$ in the first sum, and assume $M>l+m+|\beta|$ in the second sum, so that, for $0<|z| \leq 1$ we have

$$
\sum_{n=0,1, . .}\left|\partial_{x}^{\alpha} \partial_{z}^{\beta} k_{n}(x, z)\right| \leq O\left(|z|^{-(l+m+|\beta|-L)}\right)
$$

for all L.
So, we have obtained the following theorem.

Theorem 4. Assume the pseudo-differential operator T defined by

$$
\begin{equation*}
T(f)(x)=\langle a(x, \cdot) \hat{f}(\cdot) \exp (2 \pi i x \cdot)\rangle \tag{4.14}
\end{equation*}
$$

for all symbols $a \in S^{m}$ has integral representation with singular kernel $k(x, z)$ in the form

$$
\begin{equation*}
T(f)(x)=\langle k(x, \cdot) f(x-\cdot)\rangle, \tag{4.15}
\end{equation*}
$$

then the integral kernel satisfies the estimation

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{z}^{\beta} k(x, z)\right| \leq A_{\beta \alpha}(L)|z|^{-l-m-|\beta|-L} \tag{4.16}
\end{equation*}
$$

for all $z \neq 0$, and for all multi-indices $\alpha, \quad \beta$ and all $L \geq 0$ such that $l+m+|\beta|+L>0$.

From the Schwartz theorem, we obtain that for each symbol $a \in S\left(R^{2 n}\right)$ there exists a kernel $K(x, y)=k(x, x-y), \quad K \in S\left(R^{2 n}\right)$ such that

$$
\begin{equation*}
T(f)(x)=\langle a(x, \cdot) \hat{f}(\cdot) \exp (2 \pi i x \cdot)\rangle=\langle K(x, \cdot) f(\cdot)\rangle, \tag{4.17}
\end{equation*}
$$

the reverse is also true, each kernel $K \in S\left(R^{2 n}\right)$ corresponds with the symbol $a \in S\left(R^{2 n}\right)$ so that $T_{K}=T_{a}$.

5 Calderon-Zygmund operator in the

L^{2}-space
Let kernel $K(x, y)$ be defined for all $x \neq y$ and let K satisfies the estimations given by (1.2), (1.3), and (1.4) then $K(x, y)$ satisfies the differential inequality

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} K(x, y)\right| \leq A_{\beta \alpha}|x-y|^{-l-|\alpha|-|\beta|} \tag{5.1}
\end{equation*}
$$

for all multi-indices $\alpha, \quad \beta$. The operators corresponded to the kernel K under the condition (5.1) are not bounded in L^{2}-space.

Theorem 5. Assume a symbol a satisfies the inequality

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq A_{\beta \alpha}(1-|\xi|)^{(|\beta|-|\alpha|) \delta} \tag{5.2}
\end{equation*}
$$

for $0 \leq \delta<1$. Then operator

$$
\begin{equation*}
T(f)(x)=\langle a(x, \cdot) \hat{f}(\cdot) \exp (2 \pi i x \cdot)\rangle \tag{5.3}
\end{equation*}
$$

defined for all $f \in S$ extends to a bounded operator $L^{2}\left(R^{l}\right) \mapsto L^{2}\left(R^{l}\right)$.

Proof. Let g be defined on $R^{2 l}$ a smooth function with compact support and such that $g(0,0)=1$. For all $0 \leq \varepsilon<1$, we define the symbol $a_{\varepsilon}(x, \xi)$ by

$$
\begin{equation*}
a_{\varepsilon}(x, \xi)=a(x, \xi) g(\varepsilon x, \varepsilon \xi) \tag{5.4}
\end{equation*}
$$

then for all $f \in S$, we have that the set $\left\{T_{a_{\varepsilon}}\right\}$ of operators corresponding to kernels a_{ε} converges to the operator T_{a} as $\varepsilon \rightarrow 0$ in S-topology. Therefore, we can presume that the symbol a has a compact support.

Applying the Littlewood-Paley method, we decompose T into series

$$
\begin{equation*}
T f=\sum_{n=0,1, \ldots} T_{n} f=T(f * \phi)+\sum_{n=1, \ldots} T \Delta_{n} f \tag{5.5}
\end{equation*}
$$

where each operator T_{n} is associated with a symbol $a_{n}(x, \xi)=a(x, \xi) \varphi\left(2^{-n} \xi\right)$ is supported on $2^{n-1} \leq|\xi| \leq 2^{n+1}$ and T_{0} associated with $a_{0}(x, \xi)=a(x, \xi) \eta(\xi)$ supported on $|\xi| \leq 2$.

The sum (5.5) can be broken into two sums for even and for odd indices, the ξ-support of each sum is disjoint.

Since, for odd indices n and k, the intersection of supports of Δ_{n} and Δ_{k} is empty, we have $T_{n} T_{k}^{*}=T \Delta_{n} \Delta_{k}^{*} T=0$ for $n \neq k$.

If the operator $T^{*} T$ is bounded in L^{2} then the operator T is bounded in L^{2}. So, we can write

$$
=\int_{R^{l}} \int_{R^{l}} \int_{R^{l}} \int_{R^{l}} \bar{a}_{k}\left(T_{k}^{*} T_{n}\right)(f)(x)=
$$

Now, we remark that

$$
\begin{equation*}
\left(I-\Delta_{z}\right)^{N} \exp (2 \pi i z(\nu-\xi))=\left(1+4 \pi^{2}|\nu-\xi|^{2}\right)^{N} \exp (2 \pi i z(\nu-\xi)) \tag{5.7}
\end{equation*}
$$

using equality of (5.7) type, we integrate by parts first with the respect to z-variable next to ν and finally with the respect to ξ-variable. Applying estimation (5.2) and boundedness of the supports, we obtain

$$
\begin{aligned}
& \left|\int_{R^{l}} \int_{R^{l}} \int_{R^{l}} \bar{a}_{k}(z, \nu) a_{n}(z, \xi) \exp (2 \pi i(\xi(z-y)-\nu(z-x))) d z d \nu d \xi\right| \leq \\
& \leq 2^{2 \max (k, n)((\delta-1) N+l)} \int_{R^{l}}(1+|x-z|)^{-2 N}(1+|z-y|)^{-2 N} d z
\end{aligned}
$$

for $n \neq k$. Let us denote

$$
\begin{aligned}
& \int_{R^{l}} \int_{R^{l}}(1+|x-z|)^{-2 N}(1+|z-y|)^{-2 N} d z d y= \\
& =\left(\int_{R^{l}}(1+|z|)^{-2 N} d z\right)^{2}=A
\end{aligned}
$$

so, we obtain the estimation

$$
\left\|T_{k}^{*} T_{n}\right\| \leq A \cdot 2^{2 \max (k, n)((\delta-1) N+l)}
$$

therefore $\left\|T_{k}^{*} T_{n}\right\| \leq A \cdot 2^{-\varepsilon k} 2^{-\varepsilon n}$ for all $\varepsilon>0$ and let N be larger than $\frac{l}{1-\delta}$ so that we have $\varepsilon=(1-\delta) N-l$.

The next step is to show that all $\left\|T_{n}\right\|$ can be estimated by A from above. Using the Littlewood-Paley method, we have $a_{n}(x, \xi)=a(x, \xi) \varphi\left(2^{-n} \xi\right)$ and we denote $\breve{a}_{n}(x, \xi)=a_{n}\left(2^{-n \delta} x, 2^{n \delta} \xi\right)$. The symbol \breve{a}_{n} satisfies the inequality

$$
\begin{equation*}
\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} \breve{a}_{n}(x, \xi)\right| \leq A_{\beta \alpha} \tag{5.8}
\end{equation*}
$$

for all indices n.
A straightforward calculation shows $T_{n}=\Theta_{n} \breve{T}_{n} \Theta_{n}^{-1}$ where Θ_{n} is a mapping defined by $\Theta_{n}(f)(x)=f\left(2^{n \delta} x\right)$. Since $\left\|\Theta_{n}(f)\right\|_{L^{2}}=2^{\frac{n l \delta}{2}}\|f\|_{L^{2}}$ and $\left\|\Theta_{n}^{-1}(f)\right\|_{L^{2}}=$ $2^{-\frac{n l \delta}{2}}\|f\|_{L^{2}}$, we have $\left\|T_{k}\right\| \leq A$. Repeated the same process for even indices we obtain $\left\|\sum_{n=0,1, \ldots} T_{n}\right\|_{L^{2}}<\infty$.
Theorem 6. Assume kernel K satisfies conditions (1.2)-(1.4) then in order to exist a bounded operator $T: L^{2}\left(R^{l}\right) \rightarrow L^{2}\left(R^{l}\right)$ it is necessary and sufficient that there exists a constant $A>0$ such that

$$
\begin{equation*}
\int_{|x-\tilde{x}|<N}\left(\int_{\varepsilon<|x-y|<N} K(x, y) d y\right)^{2} d x \leq A N^{l} \tag{5.9}
\end{equation*}
$$

holds for all $\varepsilon>0, N$ and elements $\tilde{x} \in R^{l}$.
Proof. Applying the Littlewood-Paley method one can prove the following statement: if the kernel K satisfies (1.2)-(1.4) conditions then for the existence of the extension $T: L^{2}\left(R^{l}\right) \rightarrow L^{2}\left(R^{l}\right)$ it is necessary and sufficient that operators T and T^{*} satisfy the conditions
$\left\|T(\theta)\left(\frac{-\tilde{x}}{r}\right)\right\|_{L^{2}} \leq A r^{\frac{l}{2}}$ and $\left\|T^{*}(\theta)\left(\frac{-\tilde{x}}{r}\right)\right\|_{L^{2}} \leq A r^{\frac{l}{2}}$
for all \tilde{x}, r, and where θ is a normalized test function for a ball $B(\tilde{x}, r)$. The constant A does not depend on \tilde{x}, r or normalized test function θ.

First, we consider the necessity. We define an operator with a truncated kernel

$$
K_{\varepsilon}(x, y)=\left\{\begin{array}{l}
K(x, y), \quad|x-y|>\varepsilon \tag{5.10}\\
0, \quad|x-y| \leq \varepsilon
\end{array}\right.
$$

by

$$
\begin{equation*}
T_{\varepsilon}(f)(x)=\left\langle K_{\varepsilon}(x, \cdot) f(\cdot)\right\rangle \tag{5.11}
\end{equation*}
$$

defined for all $f \in L^{2}\left(R^{l}\right)$.
We denote the characteristic function of the ball $\{y:|y-\tilde{x}|<N\}$ by $\chi_{\tilde{x}, N}$ so we have an estimation

$$
\begin{aligned}
& \left|\int_{\varepsilon<|x-y|<N}\left(K(x, y)-K_{\varepsilon}(x, y) \chi_{\tilde{x}, N}(y)\right) d y\right| \leq \\
& \leq \int_{\frac{N}{2}<|x-y|<\frac{3 N}{2}}|K(x, y)| d y
\end{aligned}
$$

Since every ball can be covered by balls of half its radius, it is enough to show that

$$
\begin{equation*}
\int_{|x-\tilde{x}|<\frac{N}{2}}\left(\int_{\varepsilon<|x-y|<N} K(x, y) d y\right)^{2} d x \leq A N^{l} \tag{5.12}
\end{equation*}
$$

so that, for $|x-\tilde{x}|<\frac{N}{2}$ we have

$$
\left|\int_{\varepsilon<|x-y|<N}\left(K(x, y)-K_{\varepsilon}(x, y) \chi_{\tilde{x}, N}(y)\right) d y\right| \leq \tilde{A}
$$

since T_{ε} is bounded in L^{2}, we obtain the necessity of the condition (5.9).
Now, we are going to prove sufficiency. We define

$$
\begin{aligned}
& T_{\varepsilon}(f)(x)=\left\langle K_{\varepsilon}(x, \cdot) f(\cdot)\right\rangle= \\
& =\left\langle K(x, \cdot) \phi\left(\frac{x-}{\varepsilon}\right) f(\cdot)\right\rangle
\end{aligned}
$$

where we denote $K_{\varepsilon}(x, y)=K(x, y) \phi\left(\frac{x-y}{\varepsilon}\right)$ and $\phi \in C^{\infty}\left(R^{l}\right)$ such that

$$
K_{\varepsilon}(x, y)= \begin{cases}1, & |x| \geq 1 \\ 0, & |x| \leq \frac{1}{2}\end{cases}
$$

Let $\theta_{\tilde{x}, r}$ be a normalized test function for a ball $B(\tilde{x}, r)$ then we have

$$
\begin{aligned}
& T_{\varepsilon}\left(\theta_{\tilde{x}, r}\right)(x)=\left\langle K_{\varepsilon}(x, \cdot) \theta_{\tilde{x}, r}(\cdot)\right\rangle= \\
& =\int_{R^{l}} K_{\varepsilon}(x, y)\left(\theta_{\tilde{x}, r}(y)-\theta_{\tilde{x}, r}(x)\right) \chi_{x, 3 r}(y) d y+ \\
& +\theta_{\tilde{x}, r}(x) \int_{|x-y|<3 r} K_{\varepsilon}(x, y) d y
\end{aligned}
$$

for all $|x-\tilde{x}| \leq 2 r$. We estimate

$$
\begin{aligned}
& \left|\int_{R^{l}} K_{\varepsilon}(x, y)\left(\theta_{\tilde{x}, r}(y)-\theta_{\tilde{x}, r}(x)\right) \chi_{x, 3 r}(y) d y\right| \leq \\
& \leq A \int_{|x-y| \leq 3 r}|y-x|^{1-l} r^{-1} d y \leq \tilde{A}
\end{aligned}
$$

and

$$
\left|\int_{|x-y|<3 r} K_{\varepsilon}(x, y) d y-\int_{\varepsilon<|x-y|<3 r} K(x, y) d y\right| \leq \text { Const }
$$

From (5.12), we have

$$
\int_{|x-\tilde{x}|<2 r}\left|T_{\varepsilon}\left(\theta_{\tilde{x}, r}\right)(x)\right|^{2} d x \leq A r^{l}
$$

and the inequalities $\left\|T_{\varepsilon}\left(\theta_{\tilde{x}, r}\right)\right\|_{L^{2}} \leq A r^{\frac{l}{2}}$ and $\left\|T_{\varepsilon}^{*}\left(\theta_{\tilde{x}, r}\right)\right\|_{L^{2}} \leq A r^{\frac{l}{2}}$ hold for all $\varepsilon>0$ uniformly.

If we choose a countable set $\left\{\varepsilon_{n}\right\}$ such that $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ then we obtain

$$
L^{2} \text { weakly } \lim _{n \rightarrow \infty} T_{\varepsilon_{n}}=T,
$$

and since $K_{\varepsilon_{n}}(x, y) \rightarrow K(x, y)$ pointwise, we have proven the statement of the theorem.

Theorem 7. For all $f \in L^{2}\left(R^{l}\right)$, we define an operator T by

$$
\begin{equation*}
T(f)(x)=\langle K(x-\cdot) f(\cdot)\rangle \tag{5.13}
\end{equation*}
$$

with the kernel K, which satisfies conditions (1.2), (1.3), and (1.4) where $\gamma=1$. Then a nonnegative Borel measure μ is absolutely continuous $d \mu(x)=\omega(x) d x$ and weight ω belongs to class A_{p} if and only if the following inequality

$$
\begin{equation*}
\int_{R^{l}}|T(f)(y)|^{p} d \mu(y) \leq A \int_{R^{l}}|(f)(y)|^{p} d \mu(y) \tag{5.14}
\end{equation*}
$$

holds for all functions $f \in L^{p}\left(R^{l}\right)$.
Proof. The necessity is the consequence of theorem 3.
The set $C_{0}^{\infty}\left(R^{l}\right)$ is dense in the $L^{p}\left(R^{l}\right)$ in topology of the L^{p} - norm. So, we assume f is a nonnegative function of $C_{0}^{\infty}\left(R^{l}\right)$ with the support in the ball $B(\tilde{x}, r)$ with the radius $r>0$.

We denote the balls $B_{1}=B(\tilde{x}+r z, r)$ and $B_{2}=B(\tilde{x}-r z, r)$ where $x=r z$, $x=r u,|u| \leq 2$. Applying conditions on K, we obtain

$$
2|K(r(z+u))-K(r(z))| \leq|K(r(z))|
$$

we take $x=\tilde{x}+r(z+\overparen{x})$ and $y=\tilde{x}+r \overparen{y}$ where we assume $|\widehat{x}| \leq 1$ and $|\overparen{y}| \leq 1$. So, $x-y=r(z+u)$, we note Lebesgue's measure of B by mes (B), obtain that the estimation

$$
2|K * f| \operatorname{mes}(B) \geq|K(r z)| \int_{B} f(v) d v
$$

holds for all $x \in B_{1}$.
Presuming the estimation

$$
\int_{R^{l}}|T(f)(y)|^{p} d \mu(y) \leq A \int_{R^{l}}((f)(y))^{p} d \mu(y)
$$

we have

$$
\mu\left(B_{1}\right)\left(\int_{B} f(v) d v\right)^{p} \leq(\operatorname{mes}(B))^{p} A \int_{B}((f)(y))^{p} d v
$$

and

$$
\mu(B)\left(\int_{B_{1}} f(v) d v\right)^{p} \leq\left(\operatorname{mes}\left(B_{1}\right)\right)^{p} A \int_{B_{1}}((f)(y))^{p} d v
$$

The last two inequalities extend to all nonnegative functions with the support in B. Taking $f=\chi_{B_{1}}$, we have $\mu(B) \leq A \mu\left(B_{1}\right)$ and therefore the estimation

$$
\begin{equation*}
\mu(B)\left(\int_{B} f(v) d v\right)^{p} \leq(\operatorname{mes}(B))^{p} A \int_{B}((f)(y))^{p} d v \tag{5.15}
\end{equation*}
$$

holds for all nonnegative functions $f \in L^{p}\left(R^{l}\right)$ and all balls B. Then a Borel measure μ is absolutely continuous relative to the Lebesgue measure $d x$ so that $d \mu(x)=\omega(x) d x$ where density $\omega \in A_{p}$.

References

[1] E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2007),285-320. MR2286632. Zbl 1113.35105.
[2] A. Beni, K. Grochenig, K.A. Okoudjou, L.G. Rogers, Unimodular Fourier multiplier for modulation spaces, J. Funct. Anal. 246(2007) ,366-384. MR2321047. Zbl 1120.42010.
[3] A.P. Calderon, A.Zygmund, On the existence of certain singular integrals,Acta Math. 88(1952),85-139. MR52553. Zbl 0047.10201.
[4] L. A. Cafarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. 130(1989), no. 1, 189-213. MR1005611. Zbl 0692.35017.
[5] L. A. Cafarelli,I. Peral, On W1,p estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51(1998), no. 1, 1-21. MR1486629. Zbl 0906.35030.
[6] X. Changwei, Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds, J. Funct. Anal. 275(2018),No. 12, 3245-3258. MR3864501. Zbl 1401.35225.
[7] J. Chou J, X. Li, Y. Tong, H. Lin, Generalized weighted Morrey spaces on RDspaces, Rocky Mountain J. Math. 50(2020), No. 4, 1277-1293. MR4154807. Zbl 1444.42021.
[8] D. Cruz-Uribe, A. Fiorenza, Weighted endpoint estimates for commutators of fractional integrals, Czechoslovak Math. J. $\mathbf{5 7}(2007)$, No. 1, 153-160. MR2990181. Zbl 1174.42013.
[9] T. Iwabuchi, Navier-Stokes equations, and nonlinear heat equations in modulation spaces with negative derivative indices, J. Differential Equations, 248(2010), No. 8,1972-2002. MR3086672. Zbl 1185.35166.
[10] Y. Liang, D. Luong, D. Yang, Weighted endpoint estimates for commutators of Calderon-Zygmund operators, Proc. Amer. Math. Soc. 144(2016), No.12, 5171-5181. MR3556262. Zbl 1354.42023.

Surveys in Mathematics and its Applications 17 (2022), 431 - 445
http://www.utgjiu.ro/math/sma
[11] G. Lu, Parameter Marcinkiewicz integral and its commutator on generalized Orlicz-Morrey spaces, J. Korean Math. Soc. 58(2021), No.2, 383-400. MR4221571. Zbl 1468.42017.
[12] G. Lu, S. Tao, Two classes of bilinear fractional integral operators and their commutators on generalized fractional Morrey spaces, J. Pseudo-Differ. Oper. Appl. 12(2021), No. 52, 1-24. MR4320527. Zbl 1480.42021.
[13] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30, Princeton University Press,1970. MR0290095. Zbl 0207.13501.
[14] Y. Tan, L. Liu, Weighted boundedness of multilinear operator associated to a singular integral operator with variable Calderon-Zygmund kernel, Rev. R. Acad. Cienc. Exactas F-s. Nat. Ser. A Mat. RACSAM 111(2017), 931-946. MR3690067. Zbl 1374.42024.
[15] B. Wang, Z. Huo, C. Hao, Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations I, Hackensack, NJ: World Scientific,2011. MR2848761. Zbl 1254.35002.
[16] F.Y. Wang, Distribution dependent SDEs for Landau type equations, Stochastic Processes and their Applications, 128(2018), No. 2, 595-621. MR3739509. Zbl 1380.60077.
[17] P. Xia, L. Xie, X. Zhang, G. Zhao, $L q(L p)$-theory of stochastic differential equations, Stochastic Processes Appl. 130(2020), No. 8, 5188-5211. MR4108486. Zbl 1456.60153.
[18] X. Zhang, Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients Electronic Journal of Probability, 16(2011), No.16, 1096-1116. MR2820071. Zbl 1225.60099.
[19] X. Zhang, G. Zhao, Singular Brownian diffusion processes, Communications in Mathematics and Statistics, 6(2018), No. 4, 533-581. MR3877717. Zbl 1404.60087.
[20] X. Zhang, G. Zhao, Stochastic Lagrangian path for Leray's solutions of 3D Navier-Stokes equations,Comm. Math. Phys. 381(2021), No.2, 491-525. MR4207449. Zbl 1475.60129.

[^1]
License

This work is licensed under a Creative Commons Attribution 4.0 International License. © ©

[^0]: 2020 Mathematics Subject Classification: 46B70, 43A15, 43A22, 44A05, 44A10, 44A45.
 Keywords: harmonic analysis, singular integrals, Littlewood-Paley method, Calderon-Zygmund operator, dyadic decomposition.

[^1]: Mykola Yaremenko
 Department of Differential Equations, The National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.
 email: math.kiev@gmail.com

