Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 123 -- 133

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

SOME NEW INTEGRAL INEQUALITIES FOR NEGATIVE SUMMATION PARAMETERS

Abdelkader Senouci, Bouharket Benaissa and Mohammed Sofrani

Abstract. In this paper, we prove some Hardy type and Hardy-Steklov type integral inequalities for two negative summation parameters and we deduce some well-known results with sharp constants.

2020 Mathematics Subject Classification: 26D10; 26D15.
Keywords: Hardy-type integral inequality; negative summation parameters.

Full text

References

  1. B. Benaissa, M.Z. Sarikaya, A. Senouci, On some new Hardy-type inequalities, J. Math. Meth. Appl. Sci. 43(15)(2020), 8488-8495. https/doi.org/10.1002/mma.6503 MR0627685. Zbl 1453.26017.

  2. Beesack, Paul Richard and Hans P. Heinig, inequalities with indices less than 1, Proceedings of the American Mathematical Society. 83(3)(1981), 532-536. MR4151355. Zbl 0484.26010.

  3. Y. Bicheng, On a new Hardy-type integral inequality, Int. Math. Forum. 67(2007), 3317-3322. MR2373631. Zbl 1169.26311.

  4. V.I. Burenkov, P. Jain, T.V. Tararykova, On Hardy-Steklov and geometric Steklov operators, Mathematische Nachrichten, August. 280(11)(2007), 1244-1256. https/doi.org/10.1002/mana.200410550 MR2337342. Zbl 1128.26011.

  5. G.H. Hardy, Notes on some points in the integral calculus, Messenger of Marh. 57(1928), 112-120. Zbl 54.0201.01.

  6. G.H. Hardy, Notes on some points in the integral calculus, Messenger of Marh. 54(1925), 150-156. Zbl 51.0192.01.

  7. K. Jichang, Applied inequalities. Hunan Education Press, Changsha, 1992.

  8. A.A. Korenovskii, The exact continuation of a reverse Hölder Inequality and Muckenhoupt's conditions, Mat Zametki. 52(6)(1992), 1192-1201. Zbl 0807.42015.

  9. A. Kufner, L. Maligranda, L.E. Person, The Hardy inequality: about its history and some related results, Vydavatelsky Servis Publishing House, Pilsen, 2007. Zbl 1213.42001.

  10. E.N. Nikolidakis, A sharp integral Hardy-type Inequality and applications to Muckenhoupt weight on ℝ, Ann. Acad Scient Fenn Math. 39(2015), 887-896. MR3237056. Zbl 1320.26028.



Abdelkader Senouci
Department of Mathematics, University of Tiaret, Algeria.
Laboratory of informatics and mathematics.
e-mail: kamer295@yahoo.fr


Bouharket Benaissa
Faculty of Material Sciences, University of Tiaret, Algeria.
Laboratory of informatics and mathematics.
e-mail: bouharket.benaissa@univ-tiaret.dz


Mohammed Sofrani
Department of Mathematics, University of Tiaret, Algeria.
Laboratory of informatics and mathematics.
e-mail: mohammed.sofrani@univ-tiaret.dz

http://www.utgjiu.ro/math/sma