Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 135 -- 148

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

SOME APPLICATION OF A GENERALIZED DISTRIBUTION SERIES ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

W. Y. Kota

Abstract. In this search, we investigate a relation between generalized distribution series and particular subclasses of univalent functions. Further, we obtain the sufficient conditions for generalized distribution series 𝒩ψ(τ,z) and ℳ*ψ(η,τ,z) belongs to ℒθ(A,B;γ). Also, we investigate some mapping properties for this class. Finally, we obtain some corollaries and consequences of the main results.

2020 Mathematics Subject Classification: 30C45, 30C50, 30C55
Keywords: Generalized distribution series; Analytic functions; Hadamard product; Starlike function; Convex functions.

Full text

References

  1. S. Altinkaya and S. Yalcn, Poisson distribution series for analytic univalent functions, Complex Anal. Oper. Theory, 12(5) (2018), 1315-1319. MR3800974. Zbl 1393.30012.

  2. M. K. Aouf, On certain subclass of analytic p-valent functions of order alpha, Rend. Mat. App., 7 (8) (1988), 89-104. MR986230. Zbl 0686.30012.

  3. A. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, 1994, Springer-Verlag, Berlin, 2010.

  4. T. R. Caplinger and W. M. Causey, A class of univalent functions, Proc. Amer. Math. Soc., 39 (1973), 357-361. MR320294. Zbl 0267.30010.

  5. V. B. L. Chaurasia and H. S. Parihar, Certain sufficiency conditions on Fox- Wright functions, Demonstratio Math., 41(4)(2008), 813-822. MR2484506. Zbl 1160.30312.

  6. P. L. Duren, Univalent functions, Springer-Verlag, New York, 1983.

  7. R. M. El-Ashwah and A. H. El-Qadeem, Certain geometric properties of some Bessel functions, arXiv:1712.01687v1 [math.CV] 2 Dec 2017.

  8. R. M. El-Ashwah and W. Y. Kota, Some condition on a poisson distribution series to be in subclasses of univalent functions, Acta Univ. Apulensis, 51 (2017), 89-103. MR3711116. Zbl 1424.30043.

  9. R. M. El-Ashwah and W. Y. Kota, Some application of a Poisson distribution series on subclasses of univalent functions, J. Fract. Calc. Appl., 9(1) (2018), 167-179. MR3695825. Zbl 1488.30062.

  10. A. Gangadharan, T.N. Shanmugam and H.M. Srivastava, Generalized hypergeometric functions associated with k-Uniformly convex functions, Comput. Math. Appl., 44 (2002), 1515-1526. MR1944665. Zbl 1036.33003.

  11. A. W. Goodman, Univalent Functions, Vol. 1-2, Mariner, Tampa, Florida, 1983.

  12. O. P. Juneja and M. L. Mogra, A class of univalent functions, Bull. Sci. Math. 2e Ser., 103 (4)(1979), 435-447. MR548919. Zbl 0419.30014.

  13. S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transform. Spec. Funct., 9 (2)(2000), 121-132. MR1784495. Zbl 0959.30007.

  14. S. Kanas and A. Wisniowska, Conic regions and starlike functions, Rev. Roum. Math. Pures Appl., 45 (2000), 647-657. MR1836295. Zbl 0990.30010.

  15. S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, Comput. Appl. Math., 105 (1999), 327-336. MR1690599. Zbl 0944.30008.

  16. W. Y. Kota and R. M. El-Ashwah, The sufficient and necessary conditions for generalized distribution series to be in subclasses of univalent functions, Ukrainian Math. J., accepted, 2022.

  17. G. Murugusundaramoorthy, K. Vijaya and S. Porwal, Some inclusion results of certain subclasses of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat., 45 (4) (2016), 1101-1107. Zbl 1359.30022.

  18. K. S. Padmanabhan, On certain class of functions whose derivatives have a positive real part in the unit disc, Ann. Polon. Math., 23 (1970), 73-81. MR264051. Zbl 0198.11101.

  19. S. Ponnusamy and F. Ronning, Starlikeness properties for convolution involving hypergeometric series, Ann. Univ. Mariae Curie-Sklodowska, 1 (16) (1998), 141-155. MR1665537. Zbl 1008.30004.

  20. S. Porwal, Generalized distribution and its geometric properties associated with univalent functions, J. Complex Anal., 2018, Article ID 8654506, 5 pages. MR3816114. Zbl 1409.60032.

  21. S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., Art. ID 984135 (2014), 1-3, MR3173344. Zbl 1310.30017.

  22. S. Porwal and M. Ahmad, Some sufficient condition for generalized Bessel functions associated with conic regions, Vietnam J. Math., 43 (2015), 163-172. MR3319883. Zbl 1318.30033.

  23. S. Porwal and G. Murugusundaramoorthy, An application of generalized distribution series on certain classes of univalent functions associated with conic domains, Surv. Math. Appl., 16 (2021), 223-236, MR4224413. Zbl 1470.30016.

  24. R. K. Raina, On univalent and starlike Wright’s hypergeometric functions, Rend. Sem. Mat. Univ. Padova, 95 (1996), 11–22. MR1405351. Zbl 0863.30018.

  25. S. L. Shukla and Dashrath, On a class of univalent functions, Soochow J. Math., 10 (1984), 117-126. MR801679. Zbl 0578.30008.

  26. A. Swaminathan, Certain sufficiency conditions on Gaussian hypergeometric functions, J. Inequal. Pure Appl. Math., 5 (4) (2004), Article ID 83, 10 pages. MR2112436. Zbl 1139.30308.




W. Y. Kota
Department of Mathematics, Faculty of science, Damietta University New Damietta, Egypt.
e-mail: wafaa-kota@yahoo.com


http://www.utgjiu.ro/math/sma