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CONFORMABLE FUNCTIONAL EVOLUTION
EQUATIONS WITH NONLOCAL CONDITIONS IN

BANACH SPACES

Abderrahmane Boukenkoul and Mohamed Ziane

Abstract. In this paper, we study semilinear conformable fractional evolution equations with

finite delay subjected to nonlocal initial conditions in an arbitrary Banach space. We prove the

existence of mild solutions under compactness type conditions on the nonlinear forcing term. Our

result improves and complements several earlier related works. We apply our result to study a

functional conformable partial differential equation of transport type.

1 Introduction

Conformable fractional calculus introduced in [2, 19] received much attention in
recent years. Several authors have studied different aspects for the theory [7, 17, 27].
Conformable derivative is a consistent generalization of the classical integer one and
has been used in Newton mechanics [12], anomalous diffusion [26], stochastic process
[11], logistic models [3] and so on [22, 25, 28].

Functional differential equations are important applied mathematics tools, since
many phenomenons in biological and physical systems are modeled using the history
of the system [16, 24]. In such equations, classical and fractional derivatives, with
different variants, were considered [1, 4]. But, up to our knowledge, the conformable
fractional derivative has not been yet investigated in the literature.

In this paper, we study the following nonlocal evolution equations involving
conformable derivative with finite delay⎧⎨⎩ dαx(t)

dtα
= Ax(t) + f(t, xt); for t ∈ [0, b],

x(t) = φ(t) + g(x)(t); for t ∈ [−r, 0],
(1.1)

A : D(A) ⊂ E → E is a densely defined unbounded linear operator generating a

C0-semigroup {T (t), t ≥ 0} on a Banach space E,
dα(·)
dtα

is a fractional conformable
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derivative of order 0 < α < 1, f : [0, b]×C([−r, 0], E) → E, r > 0, g : C([0, b], E) →
C([−r, 0], E), φ ∈ C([−r, 0], E), and for t ≥ 0, xt : [−r, 0] → E is a history function
defined by xt(θ) = x(t+ θ).

Nonlocal initial conditions have been introduced in [9, 10]. For instance, the
nonlocal condition can be of the form x(0) = g(x)(·) where the implicit function
g(x) is given by

g(x) =
m∑
i=1

cix(τi), ci(i = 1, 2, . . . ,m) are a given constants τi ∈ [0, b]. (1.2)

Equation (1.2) allows to take into account multiple measurements at different times
τi in the initial condition, leading to a better description of the phenomenon. For
example, Deng [13] considered the phenomenon of diffusion of a small amount of
gas in a tube and assumed that the diffusion is observed via the surface of the tube.
The nonlocal condition allows additional measurement which is more precise than
the classical initial condition alone [8].

In [7], the authors studied the nonlocal evolution equation (1.1) without delay.
They obtained existence of a solution by means of Schaefer’s fixed point theorem,
under compactness of the semi-group. This paper improves and extends the results
given in [7] to the finite delay case without assuming the compactness of the semigroup
nor the Lipschitz continuity of g. We use Mönch’s fixed point theorem and assume a
regularity condition expressed in terms of the Hausdorff measure of noncompactness
on the nonlinearity term.

The rest of the paper is organized as follows. In the next section we recall some
useful notions and results. In Section 3, we state and prove a new existence result
for the problem (1.1). An illustrative example is given in Section 4.

2 Preliminaries

Let E be a separable Banach space provided with the norm ∥ · ∥. Throughout
this work, L(E) denotes the space of all bounded linear operators from E to itself,
C([0, b], E) is the Banach space of all continuous functions from [0, b] to E endowed
with the uniform norm topology ∥x∥ = sup

t∈[0,b]
∥x(t)∥, and Lp([0, b], E), 1 ≤ p < ∞,

is the space of all integrable functions in Bochner sense normed by ∥x∥Lp([0,b],E) =(∫ b

0
∥x(s)∥p ds

) 1
p

. If p = ∞, L∞([0, b], E) is the Banach space of all equivalence

classes of strongly measurable functions which are essentially bounded on [0, b]
normed by

∥x∥L∞([0,b],E) = ess sup
t∈[0,b]

∥x(t)∥ = inf{M > 0; ∥x(t)∥ ≤ M for a.e. t ∈ [0, b]}.
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Nonlocal evolution equations involving conformable derivative 85

First, let us recall the following definitions from conformable fractional calculus.

Definition 1. [19] The conformable fractional derivative of order 0 < α ≤ 1 for a
function y(·) is defined by

dαy(t)

dtα
= lim

ϵ→0

y(t+ ϵt1−α)− y(t)

ϵ
, t > 0;

dαy(0)

dtα
= lim

t→0

dαy(t)

dtα
,

and the associated fractional integral Iα(·) is defined by

Iα(y)(t) =

∫ t

0
s1−αy(s)ds,

provided that the previous limit and integral are well defined.

Henceforth, we denote by χ(Ω) the Hausdorff measure of non-compactness (MNC
for short) of nonempty bounded set Ω ⊂ E, defined by

χ(Ω) = inf{ε > 0; Ω admits a finite cover by balls of radius ≤ ε}.

We recall some properties of χ. For more details, the reader can refer to [6, 18].
Let Ω1 and Ω2 are two bounded subsets of E.

(1) χ(Ω1) = 0 if and only if Ω1 is compact.

(2) χ(Ω1) = χ(Ω1) = χ(co Ω1); where co Ω1 denotes the closed convex hull of Ω1.

(3) χ(λΩ1) = |λ|χ(Ω1) for every λ ∈ R.

(4) χ(Ω1) ≤ χ(Ω2) if Ω1 ⊂ Ω2.

(5) χ(Ω1 +Ω2) = χ(Ω1) + χ(Ω2).

(6) Let G : [0, b] → L(E) be a strongly continuous operator valued map. Then

χc({G(·)x : x ∈ Ω1}) ≤ sup
t∈[0,b]

∥G(t)∥χ(Ω1).

Here χc is the Hausdorff MNC in C([0, b], E).

(7) The sequential MNC, generated by χ(·) defined as

χ0(B) = sup{χ({xn : n ≥ 1}) : (xn) is a sequence in B}.

If E is separable, then χ0(Ω) = χ(Ω). In arbitrary E we have

χ0(Ω) ≤ χ(Ω) ≤ 2χ0(Ω). (2.1)
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Lemma 2. [6] Let V ⊆ C([0, b], E) be a bounded set. Then χ(V (t)) ≤ χc(V ) for all
t ∈ [0, b]. Furthermore, if V is equicontinuous on [0, b], then χ(V (·)) is continuous
on [0, b] and

χc(V ) = sup
t∈[0,b]

χ(V (t)).

Lemma 3. [18] Assume that {un}+∞
n=1 ⊂ L1([0, b], E) satisfies ∥un(t)∥ ≤ κ(t) a.e.

on [0, b] for all n ≥ 1 with some κ ∈ L1([0, b],R+). Then, the function χ({un(t)}+∞
n=1)

belongs to L1([0, b],R+) and

χ

({∫ t

0
un(s)ds : n ≥ 1

})
≤ 2

∫ t

0
χ(un(s) : n ≥ 1)ds. (2.2)

Theorem 4. [21, Theorem 2.1] Let C be a closed convex subset of a Banach space
E and 0 ∈ C. Assume that F : C → E is a continuous map which satisfies the
Mönch’s condition; that is, if M ⊆ C is countable and M ⊆ co({0} ∪ F (M)) =⇒ M
is compact. Then F has a fixed point in C.

3 Main Result

In this section, we give some hypotheses to prove the existence of mild solutions of
(1.1). We consider the following assumptions.

(H1) The semigroup (T (t))t≥0 is continuous in the uniform operator topology.

(H2) (i) The function f(·, ϕ) : [0, b] → E is strongly measurable for each ϕ ∈
C([−r, 0], E), and f(t, ·) : C([−r, 0], E) → E is continuous for a.e. t ∈ [0, b].
(ii) There exist a function h ∈ L∞([0, b],R+) and a nondecreasing continuous
function Φ : R+ → R+ such that

f(t, ϕ) ≤ h(t)Φ(∥ϕ∥), a.e. t ∈ [0, b] and all ϕ ∈ C([−r, 0], E).

(iii) There exists a function ξ ∈ L∞([0, b],R+) such that for any bounded
subset D ⊂ C([−r, 0], E), we have

χ(f(t,D)) ≤ ξ(t) sup
−r≤θ≤0

χ(D(θ)), for a.e. t ∈ [0, b],

(H3) g : C([0, b], E) → C([−r, 0], E) is continuous and compact. Moreover

∥g(ϕ)∥ ≤ c∥ϕ∥+ d, for all ϕ ∈ C([0, b], E),

for some constants c, d > 0.

We recall that the mild solution can be defined by the following [7, Lemma 3.1]
and [17, Definition 7].
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Nonlocal evolution equations involving conformable derivative 87

Definition 5. A function x ∈ C([0, b], E) is said to be a mild solution of the problem
(1.1) if x(t) = φ(t) + g(x)(t) for t ∈ [−r, 0] and

x(t) = T

(
tα

α

)
[φ(0)+g(x)(0)]+

∫ t

0
sα−1T

(
tα − sα

α

)
f(s, xs)ds, t ∈ [0, b]. (3.1)

Thanks to the uniform boundedness principle, there exists Mα > 0 such that

sup
0≤t≤b

T (
tα

α

) ≤ Mα.

Remark 6. In general, the linear operator S(t) := T

(
tα

α

)
for equation (3.1) does

not satisfy the usual algebraic semigroup property, namely

S(t+ s) ̸= S(t)S(s) for some t, s ≥ 0,

which induces some difficulties in obtaining the compactness of the operator solution.
We refer to [5] for more details about the intuitive algebraic semigroup property and
the generation theorem.

Recall that the C0-semigroup T (t) is said to be equicontinuous (or continuous in
the uniform operator topology or operator-norm continuous) if t ↦→ {T (t)x, x ∈ B}
is equicontinuous at t > 0 for each bounded set B ⊂ E.

Proposition 7. For t > 0, if T (t) is equicontinuous then S(t) is also equicontinuous.

Proof. Suppose that {T (t)}t≥0 is equicontinuous for t > 0 and let x ∈ E such that
∥x∥ ≤ 1. Then we have for any 0 < t < t ≤ b

∥S(t)x− S(t)x∥ =

T (
tα

α

)
x− T

(
t
α

α

)
x

 ,
≤

T (
tα − t

α

α

)
− I

 .
It follows that

∥S(t)− S(t)∥ ≤
T (

tα − t
α

α

)
− I

 .
The continuity in the uniform operator topology of T (t) allows us to deduce that

∥S(t)− S(t)∥ → 0 as t → t.
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Theorem 8. Assume that the conditions (H1)-(H3) hold. Then, for each φ ∈
C([−r, 0], E), the problem (1.1) has at least one mild solution on [−r, b] provided
that there exists M > 0 satisfying

Mα

(
∥φ∥+ cM + d+

bα

α
Φ(M)∥h∥L∞([0,b],R+)

)
< M. (3.2)

Proof. To find a mild solution of (1.1) in C([−r, b], E), we will apply Theorem (4).
First, let us consider the operator solution K : C([−r, b], E) → C([−r, b], E) defined
by

(Kx)(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) + g(x)(t)  
:=(K1x)(t)

, for t ∈ [−r, 0],

T

(
tα

α

)
[φ(0) + g(x)(0)]

+

∫ t

0
sα−1T

(
tα − sα

α

)
f(s, xs)ds  

:=(K2x)(t)

, for t ∈ [0, b].

(3.3)

Our goal is to show that the operator K has a fixed point in the closed ball

BM = {x ∈ C([−r, b], E) : ∥x∥ ≤ M}.

The proof is accomplished in four steps.

Step 1. K maps BM into itself. Indeed, for every x ∈ BM and every t ∈ [−r, 0],
we have

∥(Kx)(t)∥ = ∥(K1x)(t)∥ ≤ ∥φ(t)∥+ ∥g(x)(t)∥,
≤ ∥φ∥+ c∥x∥+ d,

≤ ∥φ∥+ cM + d. (3.4)

For t ∈ [0, b] and x ∈ BM , we have

∥(Kx)(t)∥ = ∥(K2x)(t)∥

≤
T (

tα

α

) ∥φ(0) + g(x)(0)∥+
∫ t

0
sα−1T

(
tα − sα

α

)
f(s, xs)ds

 ,
≤ Mα(∥φ∥+ c∥x∥+ d) +Mα

∫ t

0
sα−1h(s)Φ(∥xs∥)ds,

≤ Mα(∥φ∥+ c∥x∥+ d) +MαΦ(M)

∫ t

0
sα−1h(s)ds,

≤ Mα(∥φ∥+ cM + d) +MαΦ(M)
bα

α
∥h∥L∞([0,b],R+). (3.5)
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Nonlocal evolution equations involving conformable derivative 89

Then, the inequalities (3.2)-(3.5) imply that K(BM ) ⊆ BM .

Step 2. The operator K is continuous on BM .
Let (xm)m≥1 be a sequence in BM such that lim

m→∞
∥xm − x∥ = 0. Then, for

s ∈ [0, b], one has

∥xms − xs∥ = sup
−r≤θ≤0

∥xms (θ)− xs(θ)∥,

= sup
−r≤θ≤0

∥xm(θ + s)− x(θ + s)∥,

= sup
−r≤θ≤b

∥xm(θ)− x(θ)∥,

= ∥xm − x∥.

Therefore
lim

m→+∞
∥xms − xs∥ = 0.

By assumption (H2)(ii), we get

∥sα−1[f(s, xms )− f(s, xs)]∥ ≤ 2sα−1h(s)Φ(M), for s ∈ [0, b].

Thus, by the Lebesgue dominated convergence theorem, we have

Mα

∫ t

0
sα−1∥f(s, xms )− f(s, xs)∥ds −→

m→∞
0, for t ∈ [0, b].

Finally, by (H3) the function g is continuous. Consequently, we conclude that the
operator K is continuous.

Step 3. The family K(BM ) is equicontinuous.
Thanks to (H1) and (H3), we only need to prove the equicontinuity for [0, b].
We start by the equicontinuity at 0. For any x ∈ BM and 0 = t1 < t2 ≤ b, we

have

∥(K2x)(t2)− (K2x)(0)∥

≤
T (

tα2
α

)
− IdE

 ∥φ(0) + g(x)(0)∥+
∫ t2

0
sα−1T

(
tα2 − sα

α

)
f(s, xs)ds

 .
Thus,

∥(K2x)(t2)−(K2x)(0)∥ ≤
T (

tα2
α

)
− IdE

 (∥φ∥+cM+d)+MαΦ(M)

∫ t2

0
sα−1h(s)ds.

Consequently,
∥(K2x)(t2)− (K2x)(0)∥ → 0, as t2 → 0,
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which shows that K(BM ) is equicontinuous at t = 0.

Now, for 0 < t1 < t2 ≤ b, we have

∥(K2x)(t2)− (K2x)(t1)∥

≤
T (

tα2
α

)
− T

(
tα1
α

) ∥φ(0) + g(x)(0)∥+
∫ t2

t1

sα−1∥T
(
tα2 − sα

α

)
f(s, xs)ds∥

+

∫ t1

0
sα−1

T (
tα2 − sα

α

)
− T

(
tα1 − sα

α

) ∥f(s, xs)∥ds,
which means that

∥(K2x)(t2)− (K2x)(t1)∥

≤
T (

tα2 − tα1
α

)
− IdE

 (∥φ∥+ cM + d) +MαΦ(M)

∫ t2

t1

sα−1h(s)ds

+MαΦ(M)

∫ t1

0
sα−1

T (
tα2 − sα

α

)
− T

(
tα1 − sα

α

)h(s)ds,
=: I1 + I2 + I3.

By (H1), it is easy to see that I1, I2 → 0 as t2 → t1. In view of (H2)(ii), we obtain

sα−1

T (
tα2 − sα

α

)
− T

(
tα1 − sα

α

)h(s) ≤ 2Mαs
α−1h(s), 0 ≤ s ≤ t ≤ b.

Thanks to the continuity in the uniform operator topology of T (t), the Lebesgue
dominated convergence theorem ensures that

I3 → 0, as t2 → t1.

Thus, we deduce that K(BM ) is equicontinuous.

Step 4. The Mönch’s type condition holds.

Suppose B ⊂ BM is countable and B ⊂ co ({0} ∪ K(B)). We will prove that B
is relatively compact.

We define the MNC for every bounded subset D ⊂ C([−r, b], E) as

Ψ(D) = (χ(D([−r, 0])), χc(D)), (3.6)

where
χc(D) = sup

t∈[0,b]
e−Ltχ(D(t)), L > 0. (3.7)

For the previous construction of MNC, we refer to [15].

******************************************************************************
Surveys in Mathematics and its Applications 18 (2023), 83 – 95

https://www.utgjiu.ro/math/sma

https://www.utgjiu.ro/math/sma/v18/v18.html
https://www.utgjiu.ro/math/sma


Nonlocal evolution equations involving conformable derivative 91

Since (·)1−αξ(·) ∈ L1([0, b],R), so it is possible to choose L such that

q(L) := sup
t∈[0,b]

2Mα

∫ t

0
e−L(t−s)s1−αξ(s)ds < 1. (3.8)

Let {ym}+∞
m=1 be the countable set such that {ym}+∞

m=1 ⊂ K(B) and

χc(K(B)) = χc({ym}+∞
m=1). (3.9)

Then, there exists a set {xm}+∞
m=1 ⊂ B such that

ym(t) = (Kxm)(t), for m ≥ 1 and t ∈ [−r, b].

First, using (H3) together with the Arzelà–Ascoli Theorem, we have immediately

χ({Kxm(t), t ∈ [−r, 0]}+∞
m=1) = χ({φ(t) + g(xm)(t), t ∈ [−r, 0]}+∞

m=1) = 0.

Now, we estimate the quantity χc({ym}+∞
m=1). Using the condition (H2)(iii), for

all s ∈ [0, t] we have

χ({s1−αf(s, xms )}+∞
m=1) ≤ s1−αξ(s)χ({xms }+∞

m=1),

≤ s1−αξ(s) sup
−r≤θ≤0

χ({xm(s+ θ)}+∞
m=1),

≤ s1−αξ(s) sup
0≤τ≤s

χ({xm(τ)}+∞
m=1),

≤ eLss1−αξ(s) sup
0≤s≤t

e−Ls sup
0≤τ≤s

χ({xm(τ)}+∞
m=1),

≤ eLss1−αξ(s)χc({xm}+∞
m=1).

Thus, applying Lemma 3, we get for all t ∈ [0, b] and s ≤ t,

χ({(Kxm)(t)}+∞
m=1) ≤ 2Mαχc({xm}+∞

m=1)

∫ t

0
eLss1−αξ(s)ds.

Multiplying both sides by e−Lt, we obtain

sup
t∈[0,b]

e−Ltχ({(Kxm)(t)}+∞
m=1) ≤ χc({xm}+∞

m=1) sup
t∈[0,b]

2Mα

∫ t

0
e−L(t−s)s1−αξ(s)ds.

Taking into account the compactness of g, we derive

χc({xm}+∞
m=1) ≤ χc(B) ≤ co ({0} ∪ K(B)) ≤ χc({ym}+∞

m=1) ≤ q(L)χc({xm}+∞
m=1).

The inequality (3.8) implies

χc({xm}+∞
m=1) = χc({ym}+∞

m=1) = 0.

Therefore, Ψ(B) = (0, 0), and thus B is relatively compact. Finally, by applying
Theorem (4), we deduce the existence of at least one fixed point x ∈ BM of the
solution operator K which is a mild solution of the problem (1.1).
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4 Application

Let Ω̃ be a nonempty bounded open set in Rn with smooth boundary ∂Ω̃. Denote
E = Lp(Ω̃), with 1 ≤ p < ∞ and a ∈ Rn. Consider the functional conformable
partial (transport) differential equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dαu(t, x)

dtα
= a · ∇u(t, x) + η(t)f̃(u(t− r)(x)), [0, b]× Ω̃,

u(t, x) = 0, [0, b]× ∂Ω̃,

u(θ, x) = sin

(
t

2

)
+

∫ θ

−r

(∫
Ω̃
Θ(s, x, λ, u(s, λ))dλ

)
ds, θ ∈ [−r, 0], x ∈ Ω̃,

(4.1)
where the partial derivatives are taken in the sense of distributions over Ω̃ and
η(t) ∈ L∞([0, b],R+), f̃ is Lipschitzian with constant L̃ > 0, f̃(0) = 0. A simple
computation (like in [14, Lemma 25]) shows that the function f(t, ut(x)) = η(t)f̃(u(t−
r)(x)) satisfies (H2)(i)-(iii) with⎧⎨⎩

h(·) = η(·),
ξ(·) = L̃η(·),
Φ(∥u∥) = L̃∥u∥.

Denote {
D(A) = {u ∈ E; a · ∇u ∈ E},
Au = a · ∇u.

From [23, Theorem 4.4.1], A generates a noncompact semigroup S(t) = T

(
tα

α

)
given by

S(t)u = u

(
x− tα

α
a

)
, for each u ∈ E, t ∈ R.

Clearly, the family S(t) is continuous in the uniform operator topology (it is isometry).

For the nonlocal condition of (4.1), we assume that:

(A1) For every k > 0, there exists a positive function mk such that for ∥σ∥ ≤ k

∥Θ(t, x, λ, σ)− Φ(t, y, λ, σ)∥ ≤ mk(t, x, y, λ).

(A2) There exist two constants c̄ and d̄ such that

∥Θ(t, x, λ, σ)∥ ≤ c̄∥σ∥+ d̄, where ∥σ∥ ≤ k.

(A3) lim
x→y

∫ a

−h

(∫
Ω
mk(t, x, y, λ)dλ

)
dt = 0 uniformly on Ω̃.
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The system (4.1) can be written in the abstract form given by (1.1). All assumptions
in Theorem (8) are satisfied (see for instance [20, page 172]). Then, the problem
(4.1) has at least one mild solution.

Acknowledgement. The authors wishes to thank the referee for his (her) corrections
and remarks which helped to improve the paper.
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