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Abstract. Let R be a commutative ring with identity, M an R-module and S ⊆ R a

multiplicative set. Then M is called S-finite if there exist an s ∈ S and a finitely generated

submodule N of M such that sM ⊆ N . Also, M is called S-Noetherian if each submodule

of M is S-finite. A ring R is called S-Noetherian if it is S-Noetherian as an R-module. This

paper surveys the most recent developments in describing the structural properties of S-Noetherian

rings, S-Noetherian modules and their generalizations. Some interesting constructed examples of

S-Noetherian rings and modules are also presented.

1 Introduction

Theory of Noetherian rings and modules played an important role in the developement
of structure theory of commutative rings. This theory has a history extending over
more than hundred years. Recall that a module over a ring is called Noetherian if it
satisfies ascending chain condition on submodules, and a commutative ring is called
Noetherian if it is a Noetherian module over itself. One of the most important
roots of the theory of Noetherian rings is the Noether’s historical article [30] in
1921. Thereafter Noetherian rings and modules were studied continuously and hence
became one of the central subjects in the study of ring and module theory. Several
attempts have been made to generalize the concept of Noetherian rings and modules
in order to extend the structural properties of Noetherian rings and modules. The
idea of S-Noetherian rings and modules is one among them.

In 1988, Hamann et al. [12] introduced the notion of almost principal ideal
domain. Let D be an integral domain with field of fraction K. An ideal I of D[X]
is called almost principal if there exist an f(X) ∈ I of positive degree and a nonzero
s ∈ D such that sI ⊆ f(X)D[X]. A polynomial ring D[X] is called an almost
principal ideal domain if all ideals of D[X] with proper extensions to K[X] are
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almost principal. They introduced this notion to study the following questions due
to Ratliff, Houston and Arnold:

1. When is (aX − b)K[X] ∩D[X] generated by linear polynomials?

2. When is f(X)K[X] ∩D[X] divisorial?

3. When is an ideal I, which is its own extension-contraction from D[X] to D[[X]]
and back, equal to closure of I in the X-adic topology?

In 1995, Anderson et al. [2] introduced the notion of almost Noetherian ring.
An ideal I of D[X] is said to be almost finitely generated if there exists a finitely
generated ideal N of D[X] and a nonzero s ∈ D such that sI ⊆ N ⊆ I. A
polynomial ring D[X] is called almost Noetherian if each nonzero ideal I of D[X]
with IK[X] ̸= K[X] is almost finitely generated. For a domain D, they proved that
D[X] is almost Noetherian if and only if D[X] is an almost PID. They used this
concept to study Querre’s characterization of divisorial ideals in integrally closed
polynomial rings. Later, in 2002, Anderson and Dumitrescu [1] abstracted the
notion of almost Noetherian for any commutative ring and called it an S-Noetherian
ring. Let R be a commutative ring with identity and S a multiplicatively closed
subset of R. Then R is called S-Noetherian if for any ideal I of R, there exists
an s ∈ S and a finitely generated ideal J of R such that sI ⊆ J ⊆ I. They have
transferred several results on Noetherian rings and modules to S-Noetherian rings
and modules. For example, they proved S-version of Hilbert’s basis theorem, Eakin-
Nagata theorem and Cohen’s theorem. In 2015, Hamed [15] studied S-Noetherian
rings of the forms A [X] and A [[X]], where A = (An)n≥0 is an ascending chain of
commutative rings. He obtained a characterization for the rings A [X] and A [[X]] to
be S-Noetherian. Non-commutative S-Noetherian rings and S-Noetherian modules
were first studied in details by Baeck et al. [6] in 2016. In the same year, Hamed [14]
provided a connection between S-Noetherian modules and S-stationary ascending
chains and obtained several useful properties of this class of modules. In 2018,
Hamed [13] introduced and studied the concept of S-Noetherian spectrum condition
as a generalization of S-Noetherian rings and proved Hilbert basis theorem for the
S-Noetherian spectrum property. In continuation of the study of this theory, many
authors have extended well known results on Noetherian rings and modules to S-
Noetherian rings and modules (see [22] [7], [4], [15], [14], [19], [20] and [13], for
example). Further, in 2020, Kim and Lim [19] extended the notion of S-Notherian
rings to G-graded S-Noetherian rings and obtained sufficient conditions for a G-
graded S-Noetherian ring to be an S-Noetherian ring. Motivated by this, in 2023,
Ansari and Sharma [4] extended the notion of S-Notherian modules to G-graded S-
Noetherian modules and characterized S-Noetherian modules in terms of G-graded
S-Noetherian module under a mild condition.

Recently, S-version of many special rings and modules has received much attention;
for example see, [4], [21], [23] [15], [14], [19] and [20]. During last 10 years, many
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research articles have been published on S-Noetherian rings, modules and their
generalizations, and it is therefore an area of interest to many algebraists. The aim
of this article is to survey the most recent developments in describing the structural
properties of S-Noetherian rings, S-Noetherian modules and their generalizations.
Throughout the paper, all rings are commutative with identity, all modules are
unitary and N denotes the set of all non-negative integers unless otherwise stated.

2 S-Noetherian Rings and Modules

In this section, we investigate the structural properties of S-Noetherian rings and
modules. In 2002, Anderson and Dumitrescu [1] introduced S-Noetherian rings
and modules as a generalization of Noetherian rings and modules. This notion was
useful for extending many properties of Noetherian rings and modules. We begin
this section by introducing the definitions of S-Noetherian rings and modules.

Definition 1. [1, Definition 1] Let R be a ring and S ⊆ R a multiplicative set. We
say that an ideal I of R is S-finite if sI ⊆ J ⊆ I for some finitely generated ideal
J of R and some s ∈ S. We say that R is S-Noetherian ring if each ideal of R is
S-finite.

Definition 2. [14, Definition 2.2] Let R be a ring, S ⊆ R a multiplicative set
and M an R-module. We say that M is S-finite if sM ⊆ N for some s ∈ S and
some finitely generated submodule N of M . Also, M is called S-Noetherian if each
submodule of M is S-finite.

It is clear from the definitions that every Noetherian ring is S-Noetherian for any
multiplicative subset S. However, an S-Noetherian ring need not be Noetherian.
The following examples present S-Noetherian rings which are not Noetherian.

Example 3. Let R1 be a non-Noetherian domain and R2 be a Noetherian domain.
Consider R = R1×R2 and a multiplicative set S = (S1∪{0})×S2 of R, where S1 is
a multiplicative set of R1 and S2 is a multiplicative set of R2. Let I = I1 × I2 be an
ideal of R, where I1 is an ideal of R1 and I2 is an ideal of R2. Take s = (0, s2) ∈ S,
where s2 ∈ S2. For an ideal I = I1 × I2 ⊆ R we have sI ⊆ {0} × s2I2 ⊆ I. This
implies that I is S-finite, so R is S-Noetherian. However, R is not a Noetherian
domain.

Example 4. Consider a ring R =
F [X1, X2, . . . , Xn, . . .]

⟨XiXj ; i ̸= j⟩
, where F is a field. Let

Yi = Xi be the image of Xi under the canonical map. Consider the multiplicative
set S = {Y n

1 : n ∈ N} of R. Then ⟨Y1⟩ ⊆ ⟨Y1, Y2⟩ ⊆ · · · ⊆ ⟨Y1, Y2, . . . , Yn⟩ ⊆ · · ·
is an ascending chain of ideals of R which is not stationary. Consequently, R is
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not a Noetherian ring. Now let I be an ideal of R and f =
∑
i

∑
j
rijY

j
i ∈ I, and

s = Y1 ∈ S. Write

f =
∑
i

∑
j

rijY
j
i

= (r10 + r11Y1 + r12Y
2
1 + · · ·+ r1n1Y

n1
1 ) + (r20 + r21Y2 + r22Y

2
2 + · · ·+ r2n2Y

n2
2 ) + · · ·

+ (rm0 + rm1Ym + rm2Y
2
m + · · ·+ rmnk

Y nk
m )

= f1 + f2 + · · ·+ fm,

where fi = ri0 + ri1Yi + ri2Y
2
i + · · · + riniY

ni
i for i = 1, 2, . . . ,m. Then sf =

Y1f1 + Y1f2 + · · · + Y1fm. Since X1fj ∈ ⟨XiXj : i ̸= j⟩ for j = 2, 3, . . . ,m, so
Y1fj = 0 for j = 2, 3, . . . ,m. Consequently, sf = Y1f1. Now we show that sR ∼=
Y1F [Y1]. For this, define ϕ : R → F [Y1] by ϕ(f) = f1. Clearly, ϕ is a surjective ring
homomorphism. Also,

ker ϕ = {f = f1 + f2 + · · ·+ fm ∈ R : ϕ(f) = 0}
= {f = f1 + f2 + · · ·+ fm ∈ R : f1 = 0}
= {f2 + · · ·+ fm : fi = ri0 + ri1Yi + ri2Y

2
i + · · ·+ riniY

ni
i }.

Consider the induced map ϕ′ : Y1R → Y1F [Y1] such that ϕ′(Y1f) = ϕ(Y1f) =
ϕ(Y1)ϕ(f) = Y1f1. Since ϕ(Y1f) = ϕ(Y1)ϕ(f) = Y1ϕ(f) = Y1f1 = ϕ′(Y1f), so ϕ′ is
well defined and it can be easily seen that it is a ring homomorphism. Now

ker ϕ′ = {Y1f ∈ Y1R : ϕ′(Y1f) = 0}
= {Y1f1 ∈ Y1R : Y1f1 = 0}
= {0}.

Thus ϕ′ is an injective ring monomorphism. For surjective, let Y1f1 ∈ Y1F [Y1],
where f1 ∈ F [Y1]. Since ϕ is surjective, so there exists f ∈ R such that ϕ(f) = f1.
This implies that

ϕ′(Y1f) = ϕ(Y1f)

= ϕ(Y1)ϕ(f)

= Y1f1.

Thus ϕ′ is a ring isomorphism. Consequently, Y1R ∼= Y1F [Y1]. Thus sI = Y1I is a
principal ideal of Y1R, and so I is S-finite. Hence R is an S-Noetherian ring.

Example 5. Consider the ring R =
Z[X1, X2, . . . , Xn, . . .]

⟨Xi −X2
i+1, X1Xi⟩

, where Z is the ring of

integers. Let Yi = Xi be the image of Xi under the canonical map. More precisely
Yi = Xi + I, where I = ⟨Xi − X2

i+1, X1Xi⟩. Consider the multiplicative set S =
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{Y i
1 : i ∈ N} of R. Since Y 2

2 = Y1, Y
2
3 = Y2, Y

2
4 = Y3, . . . , Y

2
n+1 = Yn, . . . Thus

the ascending chain of principal ideals ⟨Y1⟩ ⊆ ⟨Y2⟩ ⊆ ⟨Y3⟩ ⊆ · · · ⊆ ⟨Yn⟩ ⊆ · · ·
does not stablize. Consequently, R is not a Noetherian ring. Now we claim that
R is an S-Noetherian ring. Let J be an ideal of R. Take s = Y1. Then all the
indeterminates belongs to sJ = Y1J are omitted except Y1 since Y1Yi = 0 in R.
Also, for indeterminate Y1, we have Y 2

1 = Y1Y1 = Y1Y
2
2 = 0, so Y 2

1 = 0. Thus sJ
is a principal ideal, and this shows that every ideal in R is S-finite. Hence R is a
S-Noetherian ring.

After introducing the definitions of S-Noetherian rings and modules, Anderson
and Dumitrescu [1] proved some basic properties of these classes. In the following
result, Anderson and Dumitrescu [1] provided a relationship between S-finiteness
and prime ideal as an S-version of the corresponding classical result.

Lemma 6. [1, Lemma 3] Let R be a ring, S ⊆ R a multiplicative set and M an
S-finite R-module. If N is a submodule of M , which is maximal among all non-
S-finite submodules of M , then [N : M ] = {r ∈ R : rM ⊆ N} is a prime ideal of
R.

Anderson and Dumitrescu [1] used Lemma 6 to prove the following characterization
of S-Noetherian modules.

Proposition 7. [1, Proposition 4] Let R be a ring, S ⊆ R a multiplicative set and
M an S-finite R-module. Then M is S-Noetherian if and only if the submodules of
the form PM are S-finite for each prime ideal P of R (disjoint from S).

The next proposition generalizes the following well known result: IfR is Noetherian,
then so is every finitely generated R-module.

Proposition 8. [15, Proposition 2.1] Let R be a ring and S ⊆ R be a multiplicative
set such that R is an S-Noetherian ring. If M is an S-finite R-module, then M is
an S-Noetherian R-module.

It is well known that a ring is Noetherian if and only if its ideals are finitely
generated. Cohen’s theorem is a classical result which states that a ring is Noetherian
if and only if its prime ideals are finitely generated. Various extensions of this
theorem have appeared in the literature. Anderson and Dumitrescu [1] extended
Cohen’s theorem for S-Noetherian rings.

Theorem 9 (S-Version of Cohen’s Theorem). [1, Corollary 5] Let R be a ring and
S ⊆ R a multiplicative set. Then R is S-Noetherian if and only if every prime ideal
of R (disjoint from S) is S-finite.

A subring of a Noetherian ring need not be Noetherian. For instance, let D be a
non-Noetherian domain and K be its field of fraction. Then K is a Noetherian ring
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but its subring D is not Noetherian. In view of this, a natural question arises, which
subring of a Noetherian ring is Noetherian. Eakin-Nagatan theorem provides an
affirmative answer to this question, which says that if A is a subring of a Noetherian
ring B such that B is a finitely generated A-module, then A is a Noetherian ring.
This theorem was first proved by Eakin [9] and later independently by Nagata [28].
Anderson and Dumitrescu [1] extended this theorem for S-Noetherian rings.

Theorem 10 (S-Version of Ekin-Nagata Theorem). [1, Corollary 7] Let A ⊆ B be
a ring extension and S ⊆ A a multiplicative set such that B is an S-finite A-module.
If B is an S-Noetherian ring, then so is A.

Hilbert [18] proved the theorem known as Hilbert basis theorem in the course
of his proof of finite generation of rings of invariants. This theorem says that
a polynomial ring over a Noetherian ring is Noetherian. This theorem plays an
important roll in algebraic geometry in studying the set of common roots of finitely
many polynomial equations. Anderson and Dumitrescu [1] extended Hilbert basis
theorem for S-Noetherian rings. They used anti-Archimedean multiplicative set to
prove this theorem. However, it is not known whether this theorem is true for
arbitrary multiplicative sets.

Definition 11. [15, Definition 2.5] Let R be a ring and S ⊆ R a multiplicative set.
Then S is said to be anti-Archimedean multiplicative set if ∩n≥1s

nR ∩ S ̸= ϕ.

Theorem 12 (S-Version of Hilbert Basis Theorem). [1, Proposition 9] Let R be a
ring and S ⊆ R an anti-Archimedean multiplicative set. If R is S-Noetherian, then
the polynomial ring R[X1, X2, . . . , Xn] is also an S-Noetherian ring.

Proposition 13. [1, Proposition 10] Let R be a ring and S ⊆ R an anti-Archimedean
multiplicative set consisting of nonzero divisors and X1, . . . , Xn indeterminates. If
R is S-Noetherian, then so is R[[X1, . . . , Xn]].

Proposition 14. [1, Corollary 11] Let D be an anti-Archimedean domain with
quotient field K, X1, . . . , Xn indeterminates and set S = D\{0}. Then D[[X1, . . . , Xn]]
is S-Noetherian. In particular, D[[X1, . . . , Xn]][K] is a Noetherian domain.

In [25], Liu proved Hilbert basis theorem for the Laurent series.

Theorem 15. [25, Theorem 3.1] Let R be a ring and S ⊆ R an anti-Archimedean
multiplicative set consisting of nonzero divisors and X an indeterminate. If R is
S-Noetherian, then so is R[[X,X−1]].

Let (M,≤) be a strictly ordered monoid (i.e, (M,≤) is an ordered monoid
satisfying the condition that, if x1, x2, x ∈ M and x1 < x2, then x1 + x < x2 + x),
and R a ring. Let [[RM,≤]] be the set of all maps f : M → R such that supp(f) =
{x ∈ M : f(x) ̸= 0} is Artinian and narrow. Then [[RM,≤]] is an abelian group
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with respect to pointwise addition. For every x ∈ M and f, g ∈ [[RM,≤]], let
Xx(f, g) = {(y, z) ∈ M ×M : x = y+ z, f(y) ̸= 0, g(z) ̸= 0}. It follows from (4.1) of
[32] that Xx(f, g) is finite. This fact allows one to define multiplication on [[RM,≤]]
as (fg)(x) =

∑
(y,z)∈Xx(f,g)

f(y)g(z). With this operation, and pointwise addition,

[[RM,≤]] becomes a commutative ring, which is called the ring of generalized power
series. The elements of [[RM,≤]] are called generalized power series with coefficients
in R and exponents in M . For example, if M = N and ≤ is the usual order, then
[[RN,≤]] = R[[x]], the ring of power series. Examples are given in [26] and [32]. In
[8, Theorem 4.3], Ribenboim proved that if (M,≤) satisfies the condition 0 ≤ x for
every x ∈ M , then [[RM,≤]] is left Noetherian if and only if R is left Noetherian and
M is finitely generated. In [25], Liu extended this result for S-Noetherian rings in
the form of following theorem.

Theorem 16. [25, Theorem 2.3] Let R be a ring and S ⊆ R an anti-Archimedean
multiplicative set consisting of nonzero divisors. Let (M,≤) be a strictly ordered
monoid satisfying the condition that 0 ≤ x for every x ∈ M. Then [[RM,≤]] is S-
Noetherian if and only if R is S-Noetherian and M is finitely generated.

Corollary 17. [25, Corollary 2.5] Let R be a ring and S ⊆ R an anti-Archimedean
multiplicative set consisting of nonzero divisors. Let M be a submonoid of the
additive monoid N and ≤ the usual natural order of N. Then [[RM,≤]] is S-Noetherian
if and only if R is S-Noetherian

It is well known that there is strong connection between Noetherian modules,
stationary ascending chains and maximal element. In fact, Noetherian rings and
modules are characterized through stationary ascending chains and maximal element.
Consequently, a natural question arises, can we characterize S-Noetherian modules
through S-version of stationary ascending chains. Hamed and Sana [14] introduced
and studied the concept of S-stationary ascending chains and S-maximal elements
as follows:

Definition 18. [14, Definition 2.1] Let R be a ring, M an R-module and S ⊆ R a
multiplicative set.

1. An increasing sequence (Nn)n∈N of submodules of M is called S-stationary if
there exist a positive integer k and s ∈ S such that for each n ≥ k, sNn ⊆ Nk.

2. Let X be a family of submodules of M . An element N ∈ X is said to be
S-maximal if there exists an s ∈ S such that for each L ∈ X , if N ⊆ L then
sL ⊆ N .

Nagata [29] characterized Noetherian modules by their extended submodules.
Recall that a submodule N of an R-module M is said to be extended if N = IM for
some ideal I of R. Nagata [29] showed that if M is a finitely generated R-module
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which satisfies the ascending chain condition on extended submodules, then M is a
Noetherian R-module. Inspired by this result, Hamed and Sana [14] characterized
S-Noetherian modules by their extended submodules.

Theorem 19. [14, Theorem 2.1] Let R be a ring, S ⊆ R be a multiplicative set,
and M an S-finite R-module. We consider the following statements:

1. Every nonempty family of extended submodules of M has an S-maximal element.

2. Every extended submodule of M is S-finite.

3. Every submodule of the form PM is S-finite, where P ∈ Spec(R) with P ∩S =
∅.

4. M is S-Noetherian.

5. Every increasing sequence of extended submodules of M is S-stationary.

Then (1) =⇒ (2) =⇒ (3) ⇐⇒ (4) ⇐⇒ (5). Moreover, if S is finite or S is a
countable set and ideals of R are comparable, then (5) =⇒ (1).

For finite multiplicative sets, Hamed and Sana [14] proved the following important
characterization of S-Noetherian rings.

Theorem 20. [14, Corollary 2.1] Let R be a ring, S = {s1, s2, . . . , sn} ⊆ R a finite
multiplicative set, and M an R-module. Then following statements are equivalent:

1. Every nonempty set of ideals of R has an S-maximal element.

2. R is an S-Noetherian ring.

3. Every increasing sequence of ideals of R is S-stationary.

4. Every increasing sequence of S-finite ideals of R is S-stationary.

5. Every increasing sequence of finitely generated ideals of R is S-stationary.

In the above theorem, authors obtained equivalent conditions for being an S-
Noetherian ring when S is finite. In 2018, Bilgin et al. [7] extended the above
characterizations of a S-Noetherian module and obtained equivalent conditions for
a module to be S-Noetherian for an arbitrary multiplicative set. In the following
characterization, the hypothesis is weaken to commutative from any ring.

Theorem 21. [7, Theorem 2.3] Let S ⊆ R be a multiplicative set and M an R-
module. Then following are equivalent:

1. M is S-Noetherian.
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2. Every nonempty chain of submodules of M is S-stationary.

3. Every nonempty set F of submodules of M has an S-maximal element.

Let R = (Rn)n∈N be an increasing sequence of unitary rings, R =
⋃

n∈NRn, and
X an indeterminate over R. Let R[X] (resp., R[[X]]) be the ring of polynomials
(resp., power series) with coefficients of degree i in Ri. Then (R[[X]],+, .) is a
subring of the ring of formal power series R[[X]] containing R[X]. Let S be a
multiplicative set of R0. Following [15], the sequence R = (Rn)n∈N is said to be
S-stationary if there exists a positive integer k, and s ∈ S such that for all n ≥ k,
sRn ⊆ Rk. In [15], Hamed and Sana have generalized the definition of a Noetherian
increasing sequence of commutative rings introduced by Haouat.

Definition 22. Let R = (Rn)n∈N be an increasing sequence of unitary rings and
S ⊆ R0 a multiplicative set. We say that R is S-Noetherian if it satisfies the
following conditions:

1. R0 is an S-Noetherian ring.

2. The sequence R = (Rn)n∈N is S-stationary.

3. Rn is an S-finite R0-module for each n ∈ N.

Note: Observe that 0 belongs to N.

In [15], Hamed and Sana provided necessary and sufficient conditions for the
rings R[[X]] and R[X] to be S-Noetherian rings.

Theorem 23. [15, Theorem 2.1] Let R = (Rn)n∈N be an increasing sequence of
unitary rings, R =

⋃
n∈NRn and S ⊆ R0 an anti-Archimedean multiplicative set,

then the following assertions are equivalent:

1. The sequence R = (Rn)n∈N is S-Noetherian.

2. R0 is an S-Noetherian ring and R is an S-finite R0-module.

3. R[X] is an S-Noetherian ring.

Proposition 24. [15, Proposition 2.3] Let R = (Rn)n∈N be an increasing sequence
of unitary rings and S ⊆ R0 an anti-Archimedean multiplicative set. If R = (Rn)n∈N
is an S-Noetherian ring, then the following statements hold:

1. For each n ∈ N, Rn[X] is an S-Notherian ring.

2. For each n ∈ N, R0 +XRn[X] is an S-Notherian ring.

3. The sequence (Rn[X])n∈N is S-stationary.
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In [16], Hamed and Malek introduced the notion of S-prime ideals as a generalization
of prime ideals and studied many properties of this class of ideals in S-Noetherian
rings. Let R be a ring, S ⊆ R a multiplicative set and I an ideal of R disjoint with
S. They say that I is an S-prime ideal of R if there exists an s ∈ S such that for all
a, b ∈ R if ab ∈ I, then sa ∈ I or sb ∈ I. Note that if S consists of units of R, then
notions of S-prime and prime ideal coincide. They studied the basic properties of
S-prime ideals and proved S-version of classical results of prime ideals.

The Cohen’s theorem is the classic result which states that a ring is Noetherian
if and only if its prime ideals are finitely generated. Since this result first appeared
in 1950, various extensions have appeared in the literature. Hamed and Malek [16]
proved S-version of Cohen’s theorem as an extension of this result.

Theorem 25. [16, Theorem 3] Let R be a ring and S ⊆ R a multiplicative set.
Then the following assertions are equivalent:

1. R is S-Noetherian.

2. Every S-prime ideal of R is S-finite.

3. Every prime ideal of R is S-finite.

Hamed and Malek [16] also characterize the S-Noetherian property in terms of
the power series rings in the following result.

Theorem 26. [16, Theorem 6] Let R be a ring and S ⊆ R a multiplicative set.
Then the following assertions are equivalent:

1. R is S-Noetherian.

2. For each ideal I of R, sI[[X]] ⊆ IR[[X]] ⊆ I[[X]] for some s ∈ S.

In the particular case when S consists of units of R, Hamed and Malek regain
the following well known result.

Corollary 27. [16, Corollary 5] Let R be a ring. Then R is Noetherian if and only
if for each ideal I of R we have I[[X]] = IR[[X]].

In [24], Lim studied the Nagata ring of S-Noetherian domains and locally S-
Noetherian domains. Recall that an integral domainD is said to be locally Noetherian
if its localization DM is Noetherian for each maximal ideals M of D. An integral
domainD is said to be locally S-Noetherian if its localizationDM is S-Noetherian for
each maximal ideals M of D. An integral domain D is said to be of finite character if
each ideal is contained in only finitely many maximal ideals of D. The next result is
an S-Noetherian version of the well-known fact that a Noetherian domain is locally
Noetherian, and a locally Noetherian domain with finite character is Noetherian [5,
Section 7, Exercise 9].
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Theorem 28. [24, Theorem 2] The following statements are true:

1. Every S-Noetherian domain is locally S-Noetherian.

2. Every locally S-Noetherian domain with finite character is S-Noetherian.

The converse of Theorem 28(1) does not hold in general. This also indicates the
fact that condition with finite character in Theorem 28(2) is essential. For example,
if D is an almost Dedekind domain which is not Noetherian, then D is a locally
S-Noetherian domain but not S-Noetherian. This is the case when S consists of
units in D. Recall that an integral domain D is an almost Dedekind domain if DM

is a Noetherian valuation domain for all maximal ideals M of D.

Let D be a integral domain and D[X] be the polynomial ring over D. For
f ∈ D[X], c(f) denotes the content ideal of f , i.e., the ideal of D generated by
the coeffecients of f . Let T = {f ∈ D[X] : c(f) = D}. Then T is saturated
multiplicative subset of D[X] and the quotient ring D[X]N is called the Nagata ring
of D. It was demonstrated that D is a Noetherian domain if and only if D[X] is
a Noetherian domain (see [5, Theorem 7.5]), if and only if D[X]T is a Noetherian
domain ([3, Theorem 2.2(2)]). Lim [24] proved S-Noetherian analogue of these
equivalences.

Theorem 29. [24, Theorem 4] Let D be an integral domain, S an anti-archimedean
subset of D, and T = {f ∈ D[X] : c(f) = D}. Then the following statements are
equivalent:

1. D is an S-Noetherian domain.

2. D[X] is an S-Noetherian domain.

3. D[X]T is an S-Noetherian domain.

In the next theorem, Lim [24] also studied locally S-Noetherian domains in terms
of Nagata ring.

Theorem 30. [24, Theorem 7] Let D be an integral domain, S an anti-archimedean
subset of D, and T = {f ∈ D[X] : c(f) = D}. Then the following statements are
equivalent:

(1) D is a locally S-Noetherian domain.

(2) Nagata ring D[X]T is a locally S-Noetherian domain.
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3 Generalizations of S-Noetherian rings and modules

A ring R is said to have Noetherian spectrum if R satisfies the ascending chain
condition (ACC) on radical ideals. This is equivalent to the condition that R satisfies
the ACC on prime ideals and each ideal has only finitely many prime ideals minimal
over it. Note that every Noetherian ring has Noetherian spectrum and the converse
is not true in general (see [10]). For this consider the following example.

Example 31 (A non-Noetherian ring with Noetherian spectrum). Let F be a
field, and A = F [X1, X2, . . . , Xn, . . .] a polynomial ring over F in countably many
indeterminates. Let I be an ideal of A generated by X2

1 and Xn−X2
n+1 for all n ≥ 1.

Write Yn = Xn in B = A/I. Then Y 2
1 = X

2
1 = 0 and Yn = Y 2

n+1 for all n ≥ 1 in
B. Now

Y1 = Y 2
2 =⇒ Y 2

1 = Y 4
2 =⇒ Y 4

2 = 0,
Y2 = y23 =⇒ Y 4

2 = Y 8
3 =⇒ Y 8

3 = 0
...

and so Y 2n
n = 0 for all n ≥ 2. If P = (Y1, Y2, . . .), we have B/P ∼= F , so P is

maximal. On the other hand, the generators of P are nilpotent, so P is contained in
the nilradical of B, and hence is the unique minimal prime as well. Since all primes
contain the maximal ideal of P , P is the only prime of B. Thus Spec(B)={P} is
obviously has Noetherian spectrum. But (Y1) ⊊ (Y2) ⊊ (Y3) ⊊ · · · is an infinite
ascending chain of ideals which is not stationary, so B is not Noetherian.

This concept is useful for characterization of Laskerian modules. For instance,
a finitely generated module M over a ring R is Laskerian if and only if R/(AnnM)
has Noetherian spectrum and for every proper submodule N of M , there is a prime
ideal P minimal over (N : M) and an element r in R \ P for which the submodule
(N : r) is P -primary (see [17, Proposition 2.1]). Motivated by this notion, Hamed
[13] generalized the Noetherian spectrum condition by introducing the following
definition of rings satisfying the S-Noetherian spectrum condition. This concept is
a generalization of S-Noetherian rings.

Definition 32. [13, Definition 2.1] Let R be a ring and S ⊆ R a multiplicative set.
We say that an ideal I of R is radically S-finite if there exist an element s ∈ S and
a finitely generated ideal J of R such that sI ⊆

√
J ⊆

√
I. We also define R to be

satisfy the S-Noetherian spectrum property if each ideal of R is radically S-finite.

Example 33. [13] Let R be a ring and S ⊆ R a multiplicative set.

1. Every S-finite ideal of R is radically S-finite. Indeed, if I is an S-finite ideal
of R, then there exists s ∈ S and a finitely generated ideal J of R such that
sI ⊆ J ⊆ I. So sI ⊆

√
sI ⊆

√
J ⊆

√
I. Hence I is radically S-finite. In

particular, every S-Noetherian ring has S-Noetherian spectrum.
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2. Let I be an ideal of R. If S consists of units of R, then I is radically S-finite
if and only if

√
I =

√
J for some finitely generated subideal J of I. So R has

S-Noetherian spectrum if and only if R has Noetherian spectrum.

The following example shows that there is a ring R with S-Noetherian spectrum
which does not satisfy the Noetherian spectrum property.

Example 34. Let D be an integral domain whose prime spectrum is not Noetherian
and let S = D \ {0}. Then S is a multiplicative subset of D and for each nonzero
ideal I of D, I ∩ S ̸= ϕ. Thus every nonzero ideal of D is S-finite. So D is an S-
Noetherian domain, and hence by the Example 33(1), D has S-Noetherian spectrum.

In the following theorem, Hamed [13] proved an S-version of the result of Ohm
and Pendleton [31] for at most countable multiplicative subset.

Theorem 35. [13, Theorem 2.1] Let R be a ring and S ⊆ R an at most countable
multiplicative set. Then the following statements are equivalent:

1. R satisfies the S-Noetherian spectrum property.

2. Every increasing sequence of radical ideals of R is S-stationary.

In the particular case when S = {1}, Hamed [13] obtained the result of Ohm
and Pendleton [31].

Corollary 36. [13, Corollary 2.1] Let R be a ring. Then the following statements
are equivalent:

1. Every increasing sequence of radical ideals of R is stationary (R has Noetherian
spectrum).

2. Every ideal I of R,
√
I =

√
J for some finitely generated subideal J of I.

In the next theorem, Hamed [13] gave the S-invariant of the Cohen-type theorem
for rings satisfying the S-Noetherian spectrum property.

Theorem 37. [13, Theorem 2.2] Let R be a ring and S ⊆ R a multiplicative set.
Then the following statements are equivalent:

1. R satisfies the S-Noetherian spectrum property.

2. Every radical ideal of R is radically S-finite.

3. Every prime ideal of R is radically S-finite.
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In [31], Ohm and Pendleton studied the Hilbert basis theorem for a ring to
satisfy the Noetherian spectrum condition. They showed that a commutative ring
R has Noetherian spectrum if and only if the polynomial ring R[X] has Noetherian
spectrum. However, in case of the power series ring, Ribenboim [33] gave an example
of a commutative ring R, which has Noetherian spectrum such that R[[X]] has non
Noetherian spectrum. In the following result, Hamed [13] proved the Hilbert basis
theorem for the property S-Noetherian spectrum.

Theorem 38. [13, Theorem 3.1] Let R be a ring and S ⊆ R a multiplicative set.
Then R has S-Noetherian spectrum if and only if the polynomial ring R[X] has
S-Noetherian spectrum.

Rings and modules satisfying the accr condition were introduced by Lu in [27]: an
R-module M satisfies the accr conditions if every ascending chain of submodules of
M of the form (N : J) ⊆ (N : J2) ⊆ (N : J3) ⊆ · · · terminates for every submodule
N of M and every finitely generated ideal J of R. The ring R satisfies the accr
condition if it satisfies (accr) as a module over itself. This concept generalizes the
concept of Noetherian rings and modules. In [14], Hamed and Sana generalized the
accr condition by introducing the definition of modules and rings satisfying the S-
accr condition. This concept is also a generalization of the concept of S-Noetherian
rings and modules.

Definition 39. [14, Definition 3.1] Let R be a ring and S ⊆ R a multiplicative set
and M an R-module. Then M is said to satisfy S-accr if the ascending chain of
residuals of the form (N : J) ⊆ (N : J2) ⊆ (N : J3) ⊆ · · · is S-stationary for every
submodule N of M and every finitely generated ideal J of R. In particular, the ring
R satisfies S-accr if it does as an R-module.

Remark 40. [14, Notation 3.1] Let M be an R-module, S ⊆ R be a multiplicative
set, and J a finitely generated ideal of R such that S ∩ J = ∅. We set T = {s− α :
s ∈ S and α ∈ J}. Then T is a nonempty multiplicative set of R, and 0T = {m ∈
M : ∃ t ∈ T and tm = 0} is a submodule of M .

The following theorem is the S-version of the Krull’s intersection theorem.

Theorem 41. [14, Theorem 3.1] Let R be a ring, S ⊆ R be a multiplicative set,
and M an R-module satisfying S-accr. Then

⋂
k≥1 J

kM ⊆ 0T for every finitely
generated ideal J of R such that S ∩ J = ϕ. In particular, if M is a torsion-free
R-module, then

⋂
k≥1 J

kM = 0.

The following two results provide basic properties of this class of modules.

Theorem 42. [14, Theorem 3.2] Let N be a submodule of an R-module M and
S ⊆ R a multiplicative set. Then M satisfies S-accr if and only if N and M/N
satisfy S-accr.
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Theorem 43. [14, Theorem 3.3] Let R be a ring satisfying S-accr, where S ⊆ R is
a multiplicative set. If M is a finitely generated R-module, then M satisfies S-accr.

In the next result, Hamed and Sana [14] provide a relation between the concept
of S-accr and S-Noetherian for finite multiplicative set.

Theorem 44. [14, Theorem 3.4] Let R be a ring and S ⊆ R a finite multiplicative
set. Then the ring R[X] satisfies S-accr if and only if R is an S-Noetherian ring.

Theory of graded rings and modules extends the theory of rings and modules.
Let G be an abelian group with identity element e. Then a ring R is called G-graded
if R =

⨁
g∈GRg for additive subgroups Rg and RgRh ⊆ Rgh for every g, h ∈ G. An

element of h(R) = ∪g∈GRg is called the homogeneous element. An R-module M
is called G-graded if M =

⨁
g∈GMg for additive subgroups Mg and RgMh ⊆ Mgh

for every g, h ∈ G. A submodule N of M is called graded if N =
⨁

g∈G(N ∩Mg).
Similarly, an ideal I of R is called graded if I =

⨁
g∈G(I∩Rg). AG-graded R-module

M is calledG-graded Noetherian if each graded submodule ofM is finitely generated.
AG-graded ring R is calledG-graded Noetherian if it isG-graded Noetherian module
over itself. Goto and Yamagishi [11] characterized G-graded Noetherian rings in
terms of Noetherian rings. More precisely, they proved that a G-graded ring R is
G-graded Noetherian if and only if R is Noethrian, provided G is finitely generated.
Inspired by this, Kim and Lim [19] introduced the notion of G-graded S-Noetherian
ring as a generalization of both the S-Noetherian rings and G-graded Noetherian
rings and extended previous result to this class.

Definition 45. [19] Let G be an abelian group, R =
⨁

g∈GRg a G-graded ring and
S ⊆ Re a multiplicative set. Then R is said to be a G-graded S-Noetherian ring if
every graded ideal of R is S-finite.

Among other results, Kim and Lim [19] characterized S-Noetherian rings in
terms of G-graded S-Noetherian rings as a main result in their paper.

Theorem 46. [19, Theorem 1] Suppose that G is a finitely generated abelian group.
Let R =

⨁
g∈GRg a G-graded ring and let S be an anti-Archimedean multiplicative

subset of Re. Then the following statements are equivalent.

1. R is an S-Noetherian ring.

2. R is a graded S-Noetherian ring.

3. Re is an S-Noetherian ring and R is an S-finite Re-algebra.

Motivated by the concept of G-graded S-Noetherian rings, Ansari and Sharma
[4] introduced the notion of G-graded S-Noetherian module as a generalization of
S-Noetherian module.
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Definition 47. [4, Definition 3.1] Let M be a G-graded R-module and S ⊆ h(R)
be a multiplicative set. Then M is called S-finite if there exists s ∈ S and a finitely
generated graded submodule F of M such that sM ⊆ F . Also, M is called G-graded
S-Noetherian if each graded submodule of M is S-finite.

Every S-Noetherian module is a G-graded S-Noetherian module but converse is
not true in general. For this, Ansari and Sharma [4] provided the following example.

Example 48. [4, Example 3.3] Let R = K[X±1
1 , X±1

2 , . . . , X±1
n , . . .] be a Laurent

polynomial ring in infinitely many indeterminates over a field K. Consider the group
G =

⨁∞
i=1 Z and multiplicative set S = K \ {0} of R. Then R is a G-graded field

with canonical G-grading. Consequently, R is a G-graded S-Noetherian R-module
since it has only two graded submodules, namely 0 and R. However, R is not an
S-Noetherian R-module.

Let R be ring, S a multiplicative set of R, and A an R-algebra. Then A is said
to be an S-finite R-algebra if there exist s ∈ S and a1, a2, . . . , an ∈ A such that
sA ⊆ R[a1, a2, . . . , an]. Also, recall from [1] that a multiplicative set S of a ring R
is called anti-Archimedean if ∩∞

k=1s
kR ∩ S ̸= ∅ for all s ∈ S. Let H be a subgroup

of G. Then RH =
⨁

h∈H Rh is an H-graded ring. In fact RH is a G-graded ring.
The following theorem provides a connection between G-graded S-Noetherian rings
and S-finite algebra.

Theorem 49. [4, Theorem 3.35] Let R be a G-graded ring, H a subgroup of G
such that G/H is finitely generated, and S an anti-Archimedean multiplicative set
of h(RH). If R is G-graded S-Noetherian, then R is an S-finite RH-algebra.

In the next result, Ansari and Sharma [4] proved the Hilbert’s basis theorem for
G-graded S-Noetherian rings. This result is a generalization of [1, Proposition 9].

Proposition 50. [4, Proposition 3.36] Let R be a G-graded ring and S ⊆ h(R) an
anti-Archimedean multiplicative set. If R is G-graded S-Noetherian, then so is the
polynomial ring R[x].

In the following theorem, Ansari and Sharma [4] characterized S-Noetherian
modules in terms of G-graded S-Noetherian modules for a countable multiplicative
set.

Theorem 51. [4, Theorem 3.28] Let G be a finitely generated abelian group, M
a G-graded R-module and S ⊆ Re a countable multiplicative set. Then M is a
G-graded S-Noetherian R-module if and only if M is an S-Noetherian R-module.

For arbitrary abelian groupG, the next theorem provides another characterization
of G-graded S-Noetherian modules in terms of S-Noetherian modules.
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Theorem 52. [4, Theorem 3.32] Let R be a strongly G-graded ring, M a G-graded
R-module and S ⊆ Re a multiplicative set. Then M =

⨁
g∈GMg is a G-graded

S-Noetherian R-module if and only if Me is an S-Noetherian Re-module.

Corollary 53. [4, Corollary 3.33] If G is finitely generated, R a strongly G-graded
ring, S a countable multiplicative set of Re and M a G-graded R-module. Then the
following are equivalent:

1. M is a G-graded S-Noetherian R-module.

2. M is an S-Noetherian R-module.

3. Me is an S-Noetherian Re-module.

In [4], Ansari and Sharma presented an example which shows that the condition
strongly graded in the above theorem is not superflous.

Example 54. [4, Example 3.34] Let G = Z, R = Z = R0 and M = Z(N)
4 (Direct sum

of countable copies of Z4) be a naturally G-graded R-module. Take the multiplicative
set S = {3n : n ≥ 0}. Then M0 = Z4 is a G-graded S-Noetherian R0-module but M
is not a G-graded S-Noetherian R-module.

Acknowledgment: Authors sincerely thank the referee for valuable suggestions
and comments to improve the paper.
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