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GEOMETRIC DISTRIBUTION SERIES
CONNECTED WITH CERTAIN SUBCLASSES OF
UNIVALENT FUNCTIONS

Masoumeh Taliyan, Shahram Najafzadeh and Mohammad Reza Azimi

Abstract. In this paper, we consider the class of normalized analytic functions of the form
f(z) = 2+ > 07, anz". Following this functions, we define the functions whose coefficients are
probabilities of the geometric distribution series and other special modes of this series. Also, we
consider different special classes of f(z). In the following we consider some lemmas that make
connection between defined special classes with the function f(z). Follower of this topic we will
consider the theorems that make connection between defined classes with the functions whose
coefficients are probabilities of geometric distribution series. Also we define Alexander-type integral
operator and find the necessary and sufficient conditions for being this operator to defined general

classes.

1 Introduction
Let A denote the class of normalized functions of the form
o
f(2) :z—i—Zanzn (1.1)
n=2
which are analytic in the open unit disk U = {z: z € C, |z| < 1}, and let S be the

subclass of A consisting of functions of the form (1.1) that are also univalent in U.
Furthermore, for g € A given by

g(z):z+2bnz”, zeU
n=2
we define the Hadamard product (or convolution product) of f and g by

(f+9)(2) =2+ anbz", z€U
n=2
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If f and g are two analytic functions in the unit disk U, we say that f is subordinate
to g, written as f(z) < g(2), if there exists a Schwarz function w, which is analytic
in U with w(0) = 0 and |w(z)| < 1 for all z € U, such that f(z) = g(w(z)), z € U.
In addition, if the function ¢ is univalent in U, we say f(z) < g(z) if and only if
7(0) = 9(0) and f(U) C g(U) (See [3, 12]).

In the following, we introduce two subclasses (a), (b) (see [2, 5, 6, 14, 15]).

(a) A function f € A is said to be in the class ¢ — s,(I") of q-uniformly starlike
functions of order I if it satisfies the condition

(55 5) 155

f(z)
where 0 <T'< 1 and g > 0.
(b) A function f € A is said to be in the class ¢ — ucv(T") of g-uniformly convex
functions of order I' if it satisfies the condition

') 21(2)
REO*'ﬂ@> F)>q 72

where 0 <T'< 1 and g > 0.
It follows from (1.2) and (1.3) that for a function f € A we have the equivalence
relation

1, zel, (1.2)

; zeU, (1.3)

F€q—ucv(l) < zf'(z) € ¢ — sp(I).
For I' = 0 the classes ¢ — ucv(I') and g — s,(I") reduce to the classes ¢ — ucv and

q — sp respectively, (see [9, 10]).

Definition 1. (/17]) For -1 < C < D <1 and |a] < g, a function f € A is said

to be in the class L(C, D, «) if the following subordination condition is met

1+Cz
1+ Dz

e f(2) < cos a4 i sin av.

Using the definition of the subordination, we say that a function f € A belongs
to the class L(C, D, «) if and only if there exists an analytic function w, satisfying
w(0) =0 and |w(z)| < 1 for all z € U, such that

1+ Cw(z)

ef'(e) = 1+ Dw(z)

cosa + isina, zeU,

or equivalently

e(f'(z) — 1)
Deiaf!(z) — [Dei™ + (C — D) cos o

<1l, zel.

Different authors investigated special choices of C, D, « in the following subclasses:
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(i) £(20 —1,1,a) := L(a,0) (0< 6 < 1,[a] < ) (I8])

(ii) £(T'(20 — 1),T',0) := (F,)(0<F§10§9<1)([7])

(iii) £(T'(20 — 1), I‘ ,00:=D(") (0<T' <1) ([4)

(iv) £(C+ (D~ )8, D,a) = L(C,D,a,6) (-1 < C < D < Lla] < 7,0 <
0 <1) ([1)).
A variable z is said to have the geometric distribution if it takes the values 0,1, 2,3, ...
with the probabilities (1—m), m(1—m), m?(1—m), m?(1—m), ... respectively, where
m is called the parameter. Thus

p(z=k) =mF(1 —m), k=0,1,2,3,...

Now, we introduce a power series whose coefficients are probabilities of the geometric
distribution:

sz:-z—kZm (1 —m)z", ze U, (0<m<1). (1.4)
We note that, by ratio test, the radius of convergence of the above series is infinity.
We will define the functions
Fim,\,z): = (1=XNK(m,z2)+ X2(K(m,z2))
= 2+ ) [1+An-Dm"(1-m)z", zeU, (15

n=2
0<m<1,A>0)

and
N(m, Ay, 2) 0 = (L= X+9)K(m,z) + (A =)2(K(m, 2)) + Myz* (K (m, 2))"
= 24> [I+@n-DA—y+nd)m"1-m)z" zeU
n=2
0<m<1,\v>0) (1.6)

and we introduce the linear operator P, : A — A defined by

o0

Pn(f)(z):=K(m,z)* f(z) =z + Zm”_l(l —m)apz", ze U, (0<m<1)(1.7)

In this paper we make some sufficient conditions for the geometric distribution series
and other depending series to be in some subclasses of analytic functions. Also, we
give conditions for an integral operator related to this series.
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2 Preliminaries

7r
Unless otherwise stated, we assume that —1 < C < D < 1,]of < 5,0 <m <

1,A,v >0 and X > ~. To prove our results we need the following lemmas.

Lemma 2. ([1, Theorem 4]) If the function f € A is of the form (1.1) and

Z (14 |DJ)|an| < (D —C)cosa

n=2
then f € L(C, D, ).

Lemma 3. ([1, Theorem 1]) If the function f € L(C,D,«) is of the form (1.1),
then

for every n > 2. The estimate is sharp.

Lemma 4. (/9, Theorem 3.53]) If f € A and for some q (0 < g < 00) the following

iequality holds
o
>l = Dloal < !
— q+2’

1
then f € q — ucv. The number 9 cannot be increased.
q

Lemma 5. ([16, Theorem 2.1]) If the function f € A is of the form (1.1) and

o0

Y [(1+q) —(g+D)]lan| <1-T,

n=2

then f € ¢ — sp(I).

3 Main Results

Theorem 6. A sufficient condition for the function K(m, z) given by (1.4) to be in
the class L(C, D, «) is

m (D —C)cosa
_ < 3.1
—m "= + |D| (3:-1)
Proof. To prove that K(m,z) € L(C, D, «), according to Lemma 2, it is sufficient
to show that
o
> n(1+|D])|m|" 1= m| < (D - C)cosa.
n=2
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In the proof of this theorem we will use the following relation

inmnfl — 1- (1 B m)2
n=2

(- m)?
We have
in(l—&—]D\)m”_l(l—m) _ (1_m)(1+!D\)i2nm"_1
= a-ma+ oy
= (D)) | ]

< (D-C)cosa,
and from Lemma 2 it follows that
K(m,z) € L(C,D, ).

O

Theorem 7. A sufficient condition for the function F(m,\, z) defined by (1.5) to
be in the class L(C, D, ) is

(14 2X\)m o 2 m? (D —C)cosa
1—m (1-m)2~ 1+4|D|

(3.2)

Proof. From Lemma 2, to prove that F(m, A, z) € L(C, D, «), it is sufficient to show
that

> @+ DP] 1+ A — D] fm|" M1 = m| < (D - C) cosav. (3.3)

n=2

In the proof of this theorem we will use the following relations

inmn—l — 1— (1 — m)2
n=2

(1 —m)?
> . 2m(l—m)2+2m(1— (1 —m)?
;n(n_l)mn 1 _ ( )(‘;_WE)S ( ))
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We have
i (1 DD+ An — ] m™ (1 — m)
— (1= m)(1+1D) [i 1 Ain(n - 1>m"—1]
= (-4 o) [t B = (L m))
= (1+|D)) :1 _1(1__mm)2 L aZmi s m)Q(JlrE”;S; (1= m)Z)]
— (41D [ - (=) + o
~ 100 [ 4 2

According to (3.2), from the above identity, we conclude it follows that the inequality
(3.3) holds and therefore F'(m, A, z) € L(C, D, ). O

Theorem 8. A sufficient condition for the function N(m,\,~,z) given by (1.6) to
be in the class L(C, D, ) is

(142X =2y + 4 y)m o (A =7 +5M)2m? 6 ym? (D —C)cosa

1-m m (1—m)2 Aomp = 130 O

Proof. To prove that N(m,\,v,2) € L(C, D, «), from Lemma 2, it is sufficient to
show that
Z n(1+ D)1+ (n—1)\ =y +n )] |m[" 1 —=m| < (D —-C)cosa. (3.5)

n=2
In the proof of this theorem we will use the following relations

HZQ(n —1)m" = A= me

3 —Dn-2)m™ 1 = 727)12

> )2t = 2

S (= 1)(n—2)(n — 3ym"! = (16_m)4

n=2
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We have

> n(1+ D)1+ (n = 1)(A =75+ nry)]|m" (1 —m)

n=2
= (1 +[D))(A =m) [i(l +2X = 2y +4M\y)(n — )m" !
n=2
£ S (A 4 5A) (0 — 1) — 2]
n=2 n—2
+ i M(n—1)(n—2)(n— 3)m”1]
n=2
=(1+|D)(1 —m) [(1 + 2\ — 27+ 4)\y) a —mm)2 +3 inm
A=+ 5>\'y)(12_ni)3 - M(l(j_ﬂi)él}
= (1+D)) [(1 £2 IEWmJF DM it (= + 539) (12_m;)2 + (f)‘jz;
< (D —C)cosa.
This means that (3.5) holds, and hence N(m, \,v, z) € L(C, D, «). O
Theorem 9. (i) If the condition
(12_m;)2 + 13_mm tms (Dl—f’);‘osa (3.6)

holds, then the operator Py, defined by (1.7) maps the class S* to the class L(C, D, «),
that is Pp(S*) C L(C, D, ).

(i) If the condition (3.1) is satisfied, then the operator P,, maps the class K to
the class L(C, D, «), that is Py, (K) C L(C, D, «).

Proof. According to Lemma 2, to prove that P, (f) € L(C, D, «), it is sufficient to
show that

> (1 + D))m[* 1 = ml|an| < (D - C)cosa (3.7)
n=2

(i) If f € S* has the form (1.1), then the well-known inequality |a,| < n holds
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for all n > 2 ([11, 13]) and using (3.6) we obtain that
Z (1 + D)= (1~ m)an|

—Z n—1)(n—2)+3(n—1)+1)(1+|D)m" (1 —m)

o o0 oo
=(1-m)(1+|D)) [Z (n—1)( m"_1+32(n—1)m"_1+2m"_1
n=2 n=2

(1 —m)(1 +|D|) [”;m lim) 1?]
(1+|D\)[(1_m) +1_m+m]

< (D-C)cosa

that is (3.7) holds, and hence Py, (f)(z) € L(C, D, ).

In the proof of upper results we used the following relations:

> (n=1)(n—-2m" " = TP

n=2

> m

E m" = T
—m

n=2

(ii) If f € K is of the form (1.1), then the well-known inequality |a,| < 1 holds for
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n > 2 ([11]) and according to (3.1) we have

o)

> (L +[Dm"* (1 —m)ay|

n=2

<3 (1 + [Dhm" (1= m)
n=2

=1 -m)(1+|D)Y n(m
n=2

(1 —m) oyt mm?

(1—m)?
(1 —m)?
= oyt
= (1+1|DJ) ( —i—m)
< (D —C)cosa.

Hence (3.7) holds and therefore P, (f) € L(C, D, ).

Theorem 10. If the condition

1
_ < :
1_m(D C)cosa < P (3.8)

holds, then the operator P,, maps the class L(C,D,«) to the class ¢ — ucv, that is
P, (L(C,D,a)) C q— ucv.

Proof. If f € L(C, D, «) has the form (1.1), since P, is given by (1.7), using Lemma
4 we need to prove that

(e o]

1
— )m|" 1 - nl < ——. .
Z n(n = Dim[" 1 =mllan| < == (3.9)

In the proof of this theorem, we will use the following relation:

oo

Z(n —)ym" ! = ﬁ

n=2
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We have
Z (n —1)m" 1 (1 —m)|ay|
< Z(n —1)m" Y1 —m)(D — C)cos
=(1—-—m)(D—C)cosa Z(n —1)ym"!
n=2
m
= (1 — m)(D — C) Cosam
m
= (1—m> (D —C)cosa
1
< —-.
Tqg+2
Hence (3.9) holds and consequently P, (f) € ¢ — ucv. O
Theorem 11. If the condition
(D—C)cosa m(q+1)—g(l—m)(—m—ln(l—m)] <1 (3.10)
m

holds, then P,, maps the class L(C, D, ) to the class ¢ — s, == q — s,(0), that is
P (L(C,D,a)) C q— sp.

Proof. If f € L(C, D, «) has the power expansion series (1.1) and P,, is given by
(1.7), according to Lemma 5 for I' = 0 we need to prove that

o0

Z (g+ 1) —q] |m|" L1 — ml|a,| < 1. (3.11)

In the proof of this theorem, we will use the following relations:

Zm”_lzﬁ, Z%:(—ln(l—m)—m].
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We have
> [nlg+1) =gl [m[" |1 = ml|ay|
n=2
N ] e e K ()
n=2 i
=(D—-C)cosa |(1 —m)(q%—l)z:m”*1 —q(1 —m)z mn ]
L n=2 n=2

1-m m

_ (D= C)eosa |(1—m)(g+1)—"— — (1 = m)(—m —In(1 — m))]

— (D - C)cosa :m(q 1) - %(1 — m)(—m — In(1 — m))}
<1.

That is (3.11) holds and thus P, (f) € ¢ — sp.

In the following two theorems we will obtain analogues results in connection with
the function I, defined by

In(2) ;:/0 K(T’t)dt, zeU.

Theorem 12. A sufficient condition for the function I,,, to be in the class L(C, D, «)
18

m(1+|D]) < (D —C)cosa. (3.12)
Proof. Since
Im(z) = (] ) 1
m(2) z—i—nzzm ( m)n, zeU (3.13)

to prove that I,,, € L(C, D, «), according to Lemma 2, it is sufficient to show that

“n(l+D
3 ”(:)|m|”—1|1 —m| < (D—-C)cosa. (3.14)

n=2
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We have
= n(1+|D|)
S P s

n=2
=1 -m)1+|D)) _m"!
n=2

=1 -m)A+|Dl)——
m(1+|D]) < (D —C)cosa.
Now from (3.14) it follows that
I, € L(C,D,a).
O

Theorem 13. A sufficient condition for the function I, to be in the class ¢ — sp(I")
18

mig+1) — (1;nm) (g+T)(—m —In(l —m)) <1—T. (3.15)

Proof. Since I,,, has the form (3.13), to prove that I,, € ¢ — sp(I"), according to
Lemma 5, it is sufficient to prove that

E:n@+') @+ D) =11 < 1T (3.16)
n
n=2

In the proof of this theorem we will use the following relations

nzz:zTnnlzl_Tn7
3 %n:—ln(l—m)—m
n=2
We have
n(qul)n (Q+F) nfl(l_m)
n=2
( g+1)> m" - “;mkm+m§j”
n=2
1 -mg+ ) - Ly m) - m)
=g+ 1)~ T g Ty In(1 )~ m)
<1-T.
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Now from (3.16), we conclude that

Iy, € g —sp(T).
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