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FIVE LECTURES ON CLUSTER THEORY

Ray Maresca

Abstract. In this paper, we will present the author’s interpretation and embellishment of five

lectures on cluster theory given by Kiyoshi Igusa during the Spring semester of 2022 at Brandeis

University. They are meant to be used as an introduction to cluster theory from a representation-

theoretic point of view.

1 Introduction

1.1 Some History

Since its introduction in the early 2000’s by Fomin and Zelevinsky, cluster theory
has been an active area of research. Some of the first results in cluster theory,
such Fomin and Zelevinsky’s classification of finite type cluster algebras in [17],
bore striking resemblances to theorems in representation theory such as Gabriel’s
theorem in [20] and [21]. In particular, every seed or cluster in a cluster algebra
has some number, say n, cluster variables. This allows us to represent the variables
of a cluster algebra in a graph in which there is an edge between any two variables
that occur in a cluster. In this graph, which we will see in Section 4, we see that
if we have n− 1 cluster variables connected by edges, there are precisely 2 ways to
complete the the graph.

On the other hand, many of these phenomena were also being seen in representation
theory. For instance in [41], Skowroński showed that every basic tilting module has n
indecomposable summands. Moreover, Happel and Unger showed in [24] that every
basic partial tilting module having n−1 indecomposable direct summands can always
be completed into a tilting module and that there are at most two ways that this
can be done. Therefore, one may think that the ‘right’ way to connect cluster theory
and representation theory is through tilting theory, though this fails in several ways,
one being that there are more cluster variables then there are indecomposable rigid
modules and more clusters than tilting modules.

To attain a categorification of cluster theory in terms of representation theory,

2020 Mathematics Subject Classification: 08-02; 16-02
Keywords: clusters; tilting modules, 2-term silting complex; quiver Grassmannian

******************************************************************************
https://www.utgjiu.ro/math/sma

https://www.utgjiu.ro/math/sma/v18/v18.html
https://www.utgjiu.ro/math/sma


274 Ray Maresca

we thus need to extend the module category in some way. This was done by Buan,
Marsh, Reineke, Reiten, and Todorov in [8] where they constructed a larger category
called the cluster category in which the original module category can be embedded.
In [8], it was assumed that the quiver Q associated to the initial seed was acyclic, so
the path algebra is hereditary, which is an assumption we will also make throughout
this paper. This need not be the case and in [2], Amoit removes the condition of kQ
being hereditary and constructs the cluster category for non-hereditary algebras of
global dimension 2 and quivers with potential.

There however is still one thing to notice. In the cluster category of a hereditary
algebra, we have the following isomorphism from Auslander-Reiten duality:

Ext1(M,N) ∼= Hom(N, τM).

One can show that this isomorphism actually also holds in module categories of non-
hereditary cluster algebras. Therefore, there is a correspondence between the tilting
objects in the cluster category and modules in the module category of a cluster-
tilted algebra. The issue with this is that these modules may not be partial tilting
objects due to having infinite projective dimension. By dropping the requirement on
projective dimension and loosening rigidity to τ -rigidity, Adachi, Iyama, and Reiten
introduced τ -tilting theory in [1].

1.2 Framework of These Notes

Although τ -tilting theory is one of the most active areas of current research, in
this paper, we will focus on classical tilting theory and cluster theory. For a survey
on τ -tilting theory, we suggest [44] by Treffinger, where many of the references and
much of the background information in these notes were found. In this article, we
will illuminate some connections between cluster theory and representation theory
while working through the process of categorifying cluster theory when the initial
seed corresponds to a quiver with no loops or two cycles. We will do this by working
through the author’s interpretation and embellishment of 5 lectures given by Kiyoshi
Igusa during the spring semester of 2022 at Brandeis University which contain several
motivating examples and provide some intuition behind results. One thing to note
is that all proofs in the first six sections of this paper are meant to provide the
main idea and intuition behind the proof and should be taken as nothing more than
sketches. We will assume that the reader has some background in the foundations
of representation theory and suggest [3], [12], [39], and [40] as references for this
material.

We will begin these notes with Section 2 in which we give some examples that
provide intuition behind what a cluster algebra is and how clusters and cluster
variables are connected to representation theory. We then provide definitions of
cluster algebras and mutations in terms of a quiver Q. In particular, we will see
a connection between cluster variables (characters) and the Auslander-Reiten (AR)

******************************************************************************
Surveys in Mathematics and its Applications 18 (2023), 273 – 316

https://www.utgjiu.ro/math/sma

https://www.utgjiu.ro/math/sma/v18/v18.html
https://www.utgjiu.ro/math/sma


Five lectures on cluster theory 275

quiver of the corresponding initial quiver. Afterward in Section 3 we will explicitly
provide the correspondence by showing how to associate a cluster character to a
kQ-module. We will moreover see how the coefficients of this cluster character are
related to the module itself.

In Section 4 we will introduce two questions that we will spend the rest of the
notes trying to answer; namely, which sets of modules are sent to clusters and which
algebraic objects correspond to the initial cluster variables? These two questions
motivated the categorification of cluster theory in terms of representation theory.
It is here we will introduce the notion of tilting modules and how they fall short
of describing cluster theory in its entirety. We will need to extend the idea of
a tilting module by introducing support tilting modules, shifted projectives, and
silting pairs. We will do this without introducing the bounded derived category or
explicitly creating the cluster category. At this point, we will provide the bijection
between clusters and silting pairs. We will finish this section by constructing the
wall and chamber structure (stability picture) and show how this structure connects
to cluster theory.

After this, in Section 5, we will describe in fact why the stability picture introduced
in the previous section is accurate by showing that rigidity is a Zariski open condition.
To do this, we will introduce the category of 2-term silting complexes. We finish
this section by introducing the notion of stable barcodes which won’t actually be
used for the remainder of the notes. In the final section, Section 6, we introduce the
notion of maximal green sequences using exchange matrices and ice quivers. The
definition of these sequences rely on notions like sign coherence of g-vectors and
c-vectors, which we will also explain in this section. Throughout the notes, we will
attempt to provide as much referencing as possible to both history and proofs of the
results.

Before we begin, we would like to remark that not all connections between cluster
and representation theory are made in these notes. For instance, there is a beautiful
connection between functorially finite torsion classes in mod-kQ and clusters, namely
that they are in bijection. One way to see this is through the fact that the dual
graph of the stability picture is precisely the Hasse quiver of functorially finite torsion
classes in mod-kQ. For more on the lattice of torsion classes, we suggest Thomas’s
exposition [42]. For more details on the bijection, Treffinger’s survey [44] is a great
place to start.

2 Cluster Theory

2.1 Examples

Before presenting the formal definition of a cluster algebra, we provide some
intuition, motivation, and examples. Intuitively, ‘clusters’ are sets of n objects which
can be mutated. Each of these n objects are a cluster variable or cluster character.
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Throughout these lectures, we will provide two methods of thinking about clusters,
the former is the original definition and the later is a categorification of it.

(a) Clusters are transcendence bases for Q(x1, x2, . . . , xn) given by a quiver Q.

(b) Clusters are objects in a category of the form T = T1 ⊕ T2 ⊕ · · · ⊕ Tn.

One relationship between the above two methods is through something called
the ‘cluster character’ denoted by χ(Ti) ∈ Q(x1, x2, . . . , xn). We begin our studies
of cluster algebras using method (a) through an example.

Until otherwise stated, let Q be the quiver 2 → 1 ← 3. Note that this quiver
consists of only descending arrows, that is, there is an arrow from i to j if and
only if j < i. Below are three depictions of the Auslander-Reiten (AR) quiver for
this quiver. Note that the maps between the projectives are ascending with respect
to their vertices; that is, there is an arrow from Pi to Pj in the AR quiver if and
only if i < j. This is one reason to always take the arrows to be descending when
the quiver does not have oriented cycles. Moreover, note that the quiver formed by
the three projectives in the AR quiver is the opposite quiver of Q. On the top left
we have the standard projective/injective at vertex i notation. On the top right we
have another standard notation indicating the tops and socles of the modules on
the left. Finally, below these two is a depiction of the AR quiver using dimension
vectors. In each quiver the dotted lines indicate the AR translate τ :

P2

↘↘

I3

P1

↗↗

↘↘

I1

↗↗

↘↘
P3

↗↗

I2

2
1

↘↘

3

1

↗↗

↘↘

2 3
1

↗↗

↘↘
3
1

↗↗

2

(1, 1, 0)

↘↘

(0, 0, 1)

(1, 0, 0)

↗↗

↘↘

(1, 1, 1)

↗↗

↘↘
(1, 0, 1)

↗↗

(0, 1, 0)

The form that uses the dimension vectors is computationally useful and sheds
some light onto the relationship between AR theory and cluster theory. Recall that
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Five lectures on cluster theory 277

given a short exact sequence of modules 0 → A → B → C → 0, the dimension
vectors satisfy the equality dimA+ dimC = dimB. Since each mesh in the above
AR quiver forms an almost split sequence, which is short exact, we can construct
the AR quiver using this relationship and in some sense extend it as follows.

(1, 1, 0)

↘↘

(0, 0, 1)

↘↘

(−1, 0,−1)

(1, 0, 0)

↗↗

↘↘

(1, 1, 1)

↗↗

↘↘

(−1, 0, 0)

→→

→→
(1, 0, 1)

↗↗

(0, 1, 0)

↗↗

(−1,−1, 0)

These newly added vectors are not dimension vectors in the usual sense since
they contain negative entries. From a representation theoretic point of view, we
will see in Section 4 that these negative ‘dimension vectors’ correspond to ‘shifted
projectives’ in the categorification method of studying cluster algebras. Now to
the dimension vector (i1, i2, . . . , in), we associate the symbol xi11 x

i2
2 . . . x

in
n . Then

from the aforementioned additive relationship given by the dimension vectors, we
have that given a short exact sequence of modules 0 → A → B → C → 0, the
symbols satisfy the equality xdimAxdimC = xdimB. In this notation, by xdimA we
mean

∏n
i=1 x

dimAi
i where dimAi is the ith entry in the dimension vector of A. Then

the above AR quiver can be rewritten in terms of the symbols as follows.

x1x2

↘↘

x3

↘↘

1
x1x3

x1

↗↗

↘↘

x1x2x3

↗↗

↘↘

1
x1

↗↗

↘↘
x1x3

↗↗

x2

↗↗

1
x1x2

2.2 Cluster Variables

These symbols are the cluster variables or cluster characters for the cluster
algebra whose initial quiver is Q. Though we have not yet defined the cluster
variables, they satisfy a nice property. As was shown by Caldero and Chapoton
in [9], given an almost split sequence of modules 0 → A → B → C → 0, the
corresponding cluster characters satisfy the relationship

χ(A)χ(C) = χ(B) + 1

******************************************************************************
Surveys in Mathematics and its Applications 18 (2023), 273 – 316

https://www.utgjiu.ro/math/sma

https://www.utgjiu.ro/math/sma/v18/v18.html
https://www.utgjiu.ro/math/sma


278 Ray Maresca

where χ(B) = χ(⊕iBi) =
∏

i χ(Bi). Note that if the sequence is neither split nor
almost split, we would need to add more than one on the right hand side and if the
sequence is split, we would not need to add anything, providing some intuition on
why the sequences are almost split but not split. We will see in Section 3 where this
plus 1 is coming from. Using this formula for cluster characters, we can reconstruct
the AR quiver for our type A quiver Q, along with those ‘shifted projectives’, for
the corresponding path algebra by beginning with the opposite quiver as follows.

x2

↘↘ ↘↘
x1

↗↗

↘↘

↗↗

↘↘

↗↗

↘↘
x3

↗↗ ↗↗

To fill the left most oval, we need a cluster variable y such that x1y = x2x3 + 1,
so y = x2x3+1

x1
. We get:

x2

↘↘ ↘↘
x1

↗↗

↘↘

x2x3+1
x1

↗↗

↘↘

↗↗

↘↘
x3

↗↗ ↗↗

Continuing in this way will provide us the entire AR quiver and more for Q in
terms of the cluster variables, though it will get quite messy quickly. To reduce
unnecessary computations, we examine a simpler example. Let Q now be the quiver
1← 2. Then the AR quiver is

(1, 1)

↘↘
(1, 0)

↗↗

(0, 1)

By using the relationship between cluster characters and beginning with the
opposite quiver x1 → x2, we get the following.
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x2

↘↘

x2+1+x1
x1x2

↘↘

x1

↘↘
x1

↗↗

x1+1
x1

↗↗

1+x1
x2

↗↗

x2

Notice that if we restrict our attention to only the cluster variables with nontrivial
denominators, we are looking at the AR quiver of Q. These cluster characters
correspond to kQ-modules and the intimate relationship between the dimension
vectors and the cluster variables will be revealed in Section 3. The cluster variables
with trivial denominator correspond to the shifted projectives which will be explained
in Section 4.

2.3 Cluster Algebras and Mutation

Now that we have a sense of what we want cluster variables to be, we are ready
to provide a formal definition. The definitions of a cluster algebra and mutation was
first written down by Fomin and Zelevinski in [16]. The original definition used the
notion of an exchange matrix instead of a quiver; however as we will soon see, these
two notions are one in the same.

Definition 1. A cluster algebra is a subalgebra A ⊂ Q(x1, x2, . . . , xn) generated
by the cluster variables given by mutating a seed (Q, x∗) where

� Q is a quiver with no loops or two cycles.

� x∗ = (x1, x2, . . . , xn) is a transcendence basis for Q(x1, x2, . . . , xn) = {f(x)g(x) :

f, g ∈ Q(x1, x2, . . . , xn)}.

In order for this definition to be complete, we must define mutation which consists
of two parts, mutation of the quiver and the seed. We begin by defining mutation
of a quiver Q with a running example. For the following definition, let Q′ be the
quiver

2
β

↘↘
1

α
↗↗

3←←←←

Definition 2. We define the mutation of Q at vertex k, denoted by µkQ, as
follows.

1. We first compose any length two paths through k by introducing a new arrow.
In the running example, let k = 2.
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2
β

↘↘
1

α
↗↗

αβ →→ 3←←←←

2. Reverse all arrows at k:

2
α∗

↙↙
1

αβ →→ 3←←←←

β∗
↖↖

3. Eliminate all two cycles:

2
α∗

↙↙
1 3←←

β∗
↖↖

After all three steps, the resulting quiver is µkQ, or in this example µ2Q
′.

Notice that the procedure of mutation does not preserve representation type of
Q. To provide another example of mutation:

Example 3. Let Q be the quiver 2→ 1← 3. Then µ1Q is the quiver 2← 1→ 3.

Now is a good time to introduce the notion of exchange matrices, which will
become important in the study of maximal green sequences which will be defined in
Section 6.

Definition 4. Let Q be a quiver. The exchange matrix of Q is the matrix B = [bij ]
where bij = the number of arrows i→ j - the number of arrows j → i.

Example 5. For the running example in Definition 2, the exchange matrix is⎡⎢⎢⎢⎣
0 1 −1

−1 0 2

1 −2 0

⎤⎥⎥⎥⎦
Notice that the exchange matrix in Example 5 is skew symmetric, that is, all

entries are integers and bij = −bji. This holds more generally; in fact, any skew
symmetric matrix gives a quiver with no loops or two cycles and any quiver with no
loops or two-cycles has a skew symmetric exchange matrix, so really in our definition
of cluster algebra, we are only considering ‘skew symmetric’ cluster algebras. We
are now ready to define mutation of the seed x∗.
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Definition 6. We define the mutation of x∗ at vertex k, denoted by µk(x∗), as
µk(x∗) = (x1, x2, . . . , x

′
k, xk+1, . . . , xn) where

x′k =

∏
i→k

xbiki +
∏
k→j

x
bkj
j

xk
.

The notation
∏
i→k

means we take the product over all vertices i such that there is an

arrow from i to k. We adopt the standard convention that the empty product equals
1.

Example 7. Let Q be the quiver 2→ 1← 3 and consider the seed (x1, x2, x3). Then
mutation at vertex 1 gives µ1(Q, (x1, x2, x3)) = (µ1Q, (

x2x3+1
x1

, x2, x3)) with µ1Q the
quiver from Example 3. Notice that the plus one in the mutated seed comes from the
fact that vertex 1 in Q is a sink, so there are no arrows out of it, and the empty
product is always taken to be 1. Continuing by mutating at vertex 2 then 3 gives the
following:

(2← 1→ 3, (x2x3+1
x1

, x2, x3))

µ2

↓↓
(2→ 1→ 3, (x2x3+1

x1
, x2x3+1+x1

x1x2
, x3))

µ3

↓↓
(2→ 1← 3, (x2x3+1

x1
, x2x3+1+x1

x1x2
, x2x3+1+x1

x1x3
))

We can visualize the mutations of these cluster variables as follows. Recall the
construction of the AR quiver for Q : 2 → 1 ← 3 from Section 2.2. Continuing
this procedure would give the picture in Figure 1. Within each loop we have the
opposite quiver of the mutated quiver along with the mutated seed after performing
the indicated mutation. Moreover, each loop encloses a cluster; that is, a collection
of n cluster variables attained by mutations.

In all of the examples we have done so far, the cluster variables were all Laurent
polynomials; that is, they are of the form f(x)

xα where f(x) is a polynomial in
N(x1, x2, . . . , xn) and α ∈ Zn. It turns out that whether or not this phenomenon
holds in general has been an open question called the positivity conjecture first
stated by Fomin and Zelevinsky in 2002 in [16]. Around 2015 in [35], Lee and Schiffler
proved the positivity conjecture for all cluster algebras for which the exchange matrix
is skew symmetric, called skew symmetric cluster algebras, which is the convention
we take in these notes for all our cluster algebras. The general case was proven
in 2017 by Gross, Hacking, Keel, and Kontsevich in [22]. We have the following
theorem.
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x1

x2

x3

x2x3+1
x1

x2x3+1+x1
x1x2

x2x3+1+x1
x1x3

µ1

Ini
tia

l s
eed

µ2 ◦ µ1 µ3 ◦ µ2 ◦ µ1

Figure 1: A visualization of mutation in the AR quiver

Theorem 8. .

� Cluster variables are Laurant polynomials.

� The numerator of the Laurant polynomial always has nonnegative integral
coefficients.

The fact that the coefficients of the numerator are nonnegative integers may lead
us to believe that they count something. This is indeed the case as we will see in
Section 3.

3 Cluster Character

In this section, we begin by showing how to attain the cluster character associated
to a kQ-module where Q is a connected quiver with n vertices and no oriented
cycles; that is, kQ is a hereditary algebra which is an assumption we will take
throughout the remainder of the notes unless otherwise specified. We then explore
the connections between the cluster character and notions like quiver grassmannians
and the Fomin-Zelevinsky formula for mutation of cluster variables. To do this, we
need the notion of g-vectors, which arose from a purely cluster-algebraic perspective
by Fomin and Zelevinsky in [18]. Afterward, we realized that g-vectors can be studied
in a representation-theoretic way through projective presentations. The first such
realization was done by Dehy and Keller in [13]. Let k = k be an algebraically closed
field.

Definition 9. .

� The g-vector of a projective kQ-module P = ⊕aiPi is the vector g(P ) := a⃗ =
(a1, a2, . . . , an).
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� Let M be a kQ module. Then M admits a minimal projective presentation of
the form 0 → P ′

M → PM → M → 0 where both P ′
M and PM are projective.

The g-vector of M is g(M) := g(PM )− g(P ′
M ).

Now we provide some intuition behind how to think of the cluster character with
an example.

Example 10. Let Q = 2 → 1 ← 3. Referring back to the AR quiver given in
Section 2.1 and Figure 1, we see that the cluster character of S1 = P1 should be
χ(S1) =

x2x3+1
x1

= x2x3
x1

+ 1
x1
. The module S1 has two submodules, namely 0 and S1,

and these should correspond to the left and right terms in the above sum respectively.
The module P3 =

3
1 has three submodules: 0, S1, P3. Again comparing the AR quiver

and Figure 1, we see that χ(P3) =
x2x3+1+x1

x1x3
= x2

x1
+ 1

x1x3
+ 1

x3
and from left to right,

these three terms should correspond to 0, S1, and P3 respectively.

To see how this correspondence works in general, we make the following definition
which can be found in [9].

Definition 11. The cluster character of the kQ-module M is

χ(M) :=
∑
V⊂M

χ(M,V ),

with

χ(M,V ) := x−g(V )x−g(D(M/V ))

where D : kQ-mod→ mod-kQop denotes the duality functor and D(M/V ) denotes
the dual of the quotient module M/V .

Let’s now verify the results from the previous example.

Example 12. We begin by computing the necessary g-vectors. Since S1 = P1 is
projective, by definition we have g(S1) = (1, 0, 0). Similarly, g(P3) = (0, 0, 1). To
compute χ(P3) we also need g(D(P3/S1)) = g(D(S3)) and g(D(P3/0)) = g(D(P3)).
The former is easier than the later since D(S3) is the kQop representation 0 ←
0 → k, hence it is a projective kQop-module. Therefore g(D(S3)) = (0, 0, 1). To
compute g(D(P3)), note that D(P3)) is the kQop representation 0 ← k → k = 1

3 .

We have a kQop minimal projective presentation given by 0 → 2 → 1
2 3 →

1
3 → 0.

Thus g(D(P3)) = (1, 0, 0) − (0, 1, 0) = (1,−1, 0). Finally, we need g(D(S1)) to
compute χ(S1). Since D(S1) is the kQop representation 0← k→ 0 = I1, we have a
kQop minimal projective presentation given by 0→ 2⊕ 3→ 1

2 3 → 1→ 0. Therefore
g(D(S1)) = (1, 0, 0)−(0, 1, 0)−(0, 0, 1) = (1,−1,−1). We are now ready to compute
the cluster characters:
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χ(P3) = χ(P3, 0) + χ(P3, S1) + χ(P3, P3)

= x0x−g(D(P3)) + x−g(S1)x−g(D(S3)) + x−g(P3)x−g(D(0))

= x0x(−1,1,0) + x(−1,0,0)x(0,0,−1) + x(−1,0,0)x0

=
x2
x1

+
1

x1x3
+

1

x1

χ(S1) = χ(S1, 0) + χ(S1, S1)

= x0x−g(D(S1)) + x−g(S1)x0

= x0x(−1,1,1) + x(−1,0,0)x0

=
x2x3
x1

+
1

x1

Notice that χ(S1) in Example 12 is the same as µ1((x1, x2, x3)) from Example 7.
This is indeed not a coincidence. Suppose we have a have a general quiver without
oriented cycles. Then at vertex k, Q and Qop appear locally as depicted on the left
and right of the following diagram.

i1

→→

i2

↘↘

. . . il

↙↙
k

←← ↙↙ ↘↘
j1 j2 . . . jr

i1 i2 . . . il

k

←← ↖↖ ↗↗

j1

→→

j2

↗↗

. . . jr

↖↖

We attain a minimal projective kQ resolution of Sk by Pj1 ⊕ Pj2 ⊕ · · · ⊕ Pjr ↪→
Pk ↠ Sk and a minimal projective kQop resolution of D(Sk) given by Pi1 ⊕ Pi2 ⊕
· · · ⊕ Pil ↪→ Pk ↠ Sk. Therefore x−g(D(Sk)) =

∏
xi

xk
and x−g(Sk) =

∏
xj

xk
. Finally, we

attain a formula for χ(Sk) given by

χ(Sk) = χ(Sk, 0) + χ(Sk, Sk) =

∏
i→k

xi

xk
+

∏
k→j

xj

xk
=

∏
i→k

xi +
∏
k→j

xj

xk
.

But this is precisely the formula for mutation at vertex k given by Fomin and
Zelevinsky in Definition 6! We conclude that mutation at vertex k of the seed
(x1, x2, . . . , xn) is precisely the cluster character of the simple at vertex k. As we have
seen from the previous examples, the cluster characters seem to count the number
of submodules. This is the case for modules that have finitely many submodules.
The following theorem, which follows from Theorem 18, provides this result.
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Theorem 13. By setting all xi = 1, we get that χ(M)|(1,1,...,1) is precisely the
number of submodules of M so long as M has finitely many submodules.

Using this theorem, we can can reconstruct the AR quiver for Q when all kQ-
modules have finitely many submodules. Suppose the module B = B1 ⊕ B2. By
evaluating the cluster character at 1 and using the relationship χ(A)χ(C) = χ(B)+1
for almost split sequences A ↪→ B ↠ C, we have that the information of being an
almost split sequence is encoded in the fact that the determinant of the following
matrix is one [

χ(A) χ(B1)
χ(B2) χ(C)

]
.

Moreover note that χ(M) = 0 if and only if M = 0.

Example 14. Let Q be the quiver 1← 2← 3. We begin with the array

1

1

1

1

1 11 1

The first rhombus indicates the first matrix we must complete, namely,

[
1 1
1

]
.

Solving for the missing entry to ensure this matrix has determinant one gives the
first missing entry.

1

1

1

1

1 11 1

2

Continuing to find the missing entry in the matrix given by the rhombi will give the
following picture.
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1

1

1

1

1 11 1

2

3

4

2

3

2

1

1

1

1

Inside the triangle is a depiction of the AR quiver for Q. Notice that each number
provides the number of submodules of the corresponding module in the AR quiver:

3
2
1

↘↘
2
1

↗↗

↘↘

3
2

↘↘
1

↗↗

2

↗↗

3

Note that in the statement of Theorem 13, we restrict ourselves to the case
in which M has only finitely many submodules. This naturally raises the question,
what does the cluster character ofM tell us whenM has infinitely many submodules?
We proceed with an example.

Example 15. Let Q be the quiver 1 ← 2. Then χ(S2)|1 = x1+1
x2

⏐⏐
1
= 2. Consider

the module M = S2 ⊕ S2. Then M has three types of submodules, namely 0, S2,
and M . There is only one submodule of the form 0 and M ; however, there are
infinitely many of the form S2. Given (a, b) ∈ k2 − {(0, 0)} we have an embedding
S2 ↪→ S2⊕S2 given by x ↦→ (ax, bx). Note that scaling this embedding gives the same
image. Therefore, we can realize the image of this embedding as the equivalence class
of (a, b) ∈ k2 − {(0, 0)} up to scaling; that is, we can realize each submodule of M
of the form S2 as an element of the projective line kP 1. There are two methods to
find the cluster character.

1. We take k = C. Therefore the set of submodules of M isomorphic to S2 equals
CP 1 ∼= S2. We then set the cluster character χ(M,S2) equal to the Euler
characteristic of CP 1. Recall the definition of Euler characteristic is χ(CP 1) =∑
k

(−1)kdimHk(CP 1) = 1− 0 + 1 where Hk denotes the kth homology. There

is a shortcut to compute this; namely, the Euler characteristic of a surface of
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genus g is given by χ(Σg) = 2− 2g. In this case, our surface is of genus 0, so
we attain the result. One thing to observe is that this number can be negative;
however by Theorem 8, the coefficients in the Laurant polynomial are always
positive. This provides us a restriction on the genus of this surface whenever
the modules correspond to cluster characters!

2. Let k = Fq be the finite field with q elements. The number of elements in kP 1

is q2−1
q−1 = q + 1. One way to see this is through the fact that the points are

given by [1, a] for a ∈ k and the point at infinity [0, 1]. By taking the field with
one element, we get that q = 1 and that the number of elements in kP 1 is 2.
The reason why we get the same number as the Euler characteristic of CP 1

follows from a deep theorem in number theory that is out of the scope of these
notes.

As it turns out, the collection of submodules of fixed dimension of a given module
has been thoroughly studied.

Definition 16. Let Q be a quiver and M a kQ-module. The space of all submodules
ofM with dimension vector e, denoted by Gr(M, e), is called a quiver grassmannian.

This is indeed a space, in fact, it is a projective variety. A special case is when
Q is just a point with no arrows. Then for the representation M = kn, the quiver
grassmannian Gr(M,k) gives the ordinary grassmannian of k-planes in n-space. For
more on quiver grassmannians, see Cerulli Irelli’s lectures on quiver grassmannians
[10]. We have already seen another example of a quiver grassmannian:

Example 17. For the M and Q from the previous example, Gr(M, (0, 1)) ∼= kP 1.
Moreover, we’ve computed its Euler characteristic: χ(Gr(M, (0, 1))) = 2.

We can use the notion of quiver grassmannians to define the cluster character of
any module M as was done by Caldero and Chapoton in [9] as follows.

Theorem 18 (Caldero-Chapoton). .
The cluster character of M is given by

χ(M) =
∑
e

χ(Gr(M, e))x−g(e)x−g(D(M/e))

where the sum is taken over all vectors e such that there is a submodule of M of
dimension vector e.

At this point, this definition may not seem well defined because it stipulates
that g vectors depend only on the dimension vectors of modules and not the actual
module itself. This is indeed the case since we can also define the g vector of a kQ-
module V by g(V ) := C−1

kQ · dimV where CkQ is the Cartan matrix of Q, which
is defined as the matrix whose ith column is the dimension vector of the projective
representation at vertex i. This gives the following lemma.
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Lemma 19. The g vector g(V ) depends only on the dimension vector e = dimV .

Notice that in Example 14, we used the fact that χ(B1⊕B2) = χ(B1)χ(B2). We
now have the necessary tools to provide a representation theoretic proof of this fact.

Theorem 20. For two kQ modules A and B, the cluster character satisfies the
following equation χ(A⊕B) = χ(A)χ(B).

Sketch of Proof. It suffices to prove this when we set the xi = 1. We begin by
providing a correspondence between submodules of A⊕B and pairs of submodules
of the form (X,Y ) where X ≤ A and Y ≤ B. Define ψ((X,Y )) = X⊕Y . Then this
is an injection into the collection of submodules of A⊕B. Now, we have a split exact

sequence A ↪→ A⊕ B
pB
↠ B and given any submodule V ≤ A⊕ B, we have another

exact sequence V ∩ A ↪→ V ↠ PB(V ). We define a map ϕ(V ) = (V ∩ A, pB(V )).
Note that ϕ ◦ ψ = 1, so ϕ is surjective.

Now ϕ is not necessarily injective; however, we will show that it is injective on
the level of Euler characteristics. Consider the pair of submodules (X,Y ). Then
ϕ−1((X,Y )) = {V ⊂ A ⊕ B : V ∩ A = X and pB(V ) = Y }. By the Noether
isomorphism theorem, this set is in bijection with {W ⊂ A/X ⊕ B : W ∩ A/X =
0 and pb(W ) = Y } via the correspondence V ↦→ V/X. We can uniquely realize all
submodules W in this latter set as the graph of a function from Y to A/X:

W

A
X

B
Y

pB

In particular, with a little more effort, we have that

χ(ϕ−1(X,Y )) = χ(Hom(Y,A/X)).

When we consider Hom(Y,A/X) over a field with q elements, χ(Hom(Y,A/X)) = ql

for some l. By taking q = 1, we have that χ(Hom(Y,A/X)) = 1 and therefore,

χ(Gr(A⊕B, e)) =
∑

e1+e2=e

χ(Gr(A, e1)×Gr(B, e2))

=
∑

e1+e2=e

χ(Gr(A, e1)χ(Gr(B, e2))
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Finally, since g-vectors are linear; that is, g(V ) = g(X) + g(Y ), we have that

g(D(A⊕B)/X) = g(D(A/X)) + g(D(B/Y )).

By summing over all possible dimension vectors e, we have the result.

Recall from Section 2.2 that when we have an almost spit sequence A ↪→ B ↠ C,
the cluster characters satisfy the equation χ(A)χ(C) = χ(B) + 1 where χ(B) =
χ(⊕iBi) =

∑
i χ(Bi). We now have the tools to prove this.

Theorem 21. For an almost split sequence of kQ-modules A
q
↪→ B

p
↠ C, we have

χ(A⊕ C) = χ(A)χ(C) = χ(B) + 1.

Sketch of Proof. We proceed as in the proof of the previous theorem. Consider the
collection of tuples (X,Y ) where X ≤ A and Y ≤ B are submodules, and let V ≤ B
be a submodule. We define a map ϕ : {submodules of B} → {pairs (X,Y )} by
ϕ(V ) = (V ∩ A, p(V )). Consider a tuple (X,Y ) such that Y ̸= 0. Then since p is
irreducible and the inclusion of Y into C is not a retraction, we have the following
commutative diagram.

X
q◦i

↘↘
i
↓↓

Y
f

↙↙
i
↓↓

A
q →→ B

p →→ C

Define V = q(X) + f(Y ), so that ϕ(V ) = (X,Y ) and (X,Y ) is in the image of
ϕ. Now suppose that X ̸= 0. Then since the quotient map is not a section, we have
the following pushout diagram.

A

↓↓

q →→ B
p →→

f

↙↙
π
↓↓

C

id
↓↓

A/X →→ A/X ⊕ C →→ C

Define V = π−1((0, Y )) +X, thus ϕ(V ) = (X,Y ) and we conclude that (X,Y )
is in the image of ϕ. Therefore the map ϕ is onto {pairs (X,Y )} − {(0, C)} since C
can’t be lifted due to the irreducibilty of p. With some more work, we conclude that
χ(B) = χ(A)χ(C)− 1 where the minus one comes from the fact that the submodule
(0, C) can’t be lifted.

We have techniques to compute cluster characters of modules that lie in an
almost split sequence; however, we do not have any techniques to compute cluster
characters of modules that do not lie at the end of an almost split sequence. Although
we know how to use the definition to compute cluster characters of any kQ-module,
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we will now provide a theorem which will provide a technique to compute the cluster
characters of projectives.

Theorem 22. Let Pi denote the projective kQ-module at vertex i. Then we have

χ(Pi) = χ(radPi)x
−g(DSi) + x−1

i

where Si is the simple top of Pi.

We will not prove this, but instead provide an example. As the reader may have
guessed, the proof is given by Caldero and Chapoton in [9].

Example 23. Let Q be the quiver 1 ← 2 ← 3 so that Qop is 1 → 2 → 3. We
compute χ(P3) where P3 =

3
2
1
, radP3 =

2
1 = P2, and radP2 = 1 = P1 = S1. Thus

χ(P3) = χ(P2)x
−g(DS3) + x−1

3 = (χ(S1)x
−g(DS2) + x−1

2 )x−g(DS3) + x−1
3 .

We compute

χ(S1) = x−g(0)x−g(D(S1)) + x−g(S1)x−g(0) = x(−1,1,0) + x(−1,0,0) =
x2 + 1

x1
.

Now we need χ(P2) = χ(S1)x
−g(DS2) + x−1

2 . We have

χ(P2) =
x2 + 1

x1
x(0,−1,1) + x−1

2 =
x2x3 + x3 + x1

x1x2
.

Finally, we compute

χ(P3) = χ(P2)x
−g(DS3) + x−1

3

=
x2x3 + x3 + x1

x1x2
x(0,0,−1) + x−1

3

=
x2x3 + x3 + x1 + x1x2

x1x2

In the case in which the AR quiver of our algebra is connected, we can get the
cluster character of injectives simply by completing the AR quiver. However, in the
case in which the AR quiver is disconnected, we can’t get the cluster character of
injectives by beginning at projectives and completing meshes. For instance in the
tame case, we would never leave the preprojective component. By duality, we have
a dual theorem to Theorem 21 that provides us with a technique to compute the
cluster character of injectives.

Theorem 24. Let Ii denote the injective kQ-module at vertex i. Then we have
χ(Ii) = χ(Ii/Si)x

−g(Si) + x−1
i .
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Example 25. Let’s take Q to be the Kronecker 1 ⇔ 2 and compute χ(I1) = χ(2 21 ).

By the previous theorem, we compute χ(S2 ⊕ S2)x−g(S1) + x−1
1 . Note by Theorem

20, we have that χ(S2 ⊕ S2) = χ(S2)χ(S2). We begin by computing χ(S2) =
x2
1+1
x2

.
Since g(S1) = (1, 0), we have that

χ(I1) =

(
x21 + 1

x2

)(
x21 + 1

x2

)
x(−1,0) +

1

x1
=
x41 + 2x21 + x22 + 1

x22x1
.

Notice that this is a case analogous to Example 15 in which there are infinitely
many submodules of I1 of the form S2 ⊕ S2. So in this case, the coefficient of x21 in
the cluster character provides the Euler characteristic of Gr(I1, (1, 1)).

4 Clusters with Modules

Although not yet explicitly stated, thus far we have seen that the cluster character
χ sends indecomposable rigid modules to cluster variables, where by rigid we mean
Ext1(M,M) = 0. The two questions we wish to answer in this section are

� Which sets of modules are sent to clusters?

� Given a rigid indecomposable module M , we get χ(M) = something
xdimM . Which

algebraic objects correspond cluster variables of the form xi and what object
corresponds to the initial cluster?

To do this, we need to introduce and establish some more algebraic machinery.
For more on classical tilting theory, see [3].

Definition 26. Let Λ = kQ where Q is a quiver with n vertices and no oriented
cycles. Then a tilting module is a rigid module T with n indecomposable non-
isomorphic summands T = T1 ⊕ T2 ⊕ · · · ⊕ Tn.

The condition that T is rigid implies that Ext1(T, T ) = ⊕i,jExt
1(Ti, Tj) = 0.

This happens if and only if each Ti is rigid and they don’t extend each other, that
is, Ext1(Ti, Tj) = 0 for all i and j.

Example 27. Some examples of tilting modules are the following.

� The sum of the projective modules Λ = P1 ⊕ P2 ⊕ · · · ⊕ Pn.

� The sum of the injective modules νΛ = I1 ⊕ I2 ⊕ · · · ⊕ In where ν is the
Nakayama functor.

� Let Q be the quiver 1← 2. Then AR quiver is as follows.
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P2

↘↘
P1

↗↗

I2

Then there are 2 tilting kQ-modules given by S1 ⊕ P2 and P2 ⊕ S2. Note that
S1 ⊕ S2 is not tilting since there is an extension of S2 by S1.

� Let Q be the quiver 1← 2← 3. Then the AR quiver is as follows.

P3

↘↘
P2

↗↗

↘↘

I2

↘↘
P1 = S1

↗↗

S2

↗↗

I3 = S3

To find all 5 tilting kQ-modules, we must look for sets of three modules in the
AR quiver that do not form a mesh, or almost split sequence. To do this, we
can draw the compatibility graph, which is the graph in which there is an
edge between any two indecomposable modules that form a rigid pair. This idea
first originated as generalized associahedra (Stasheff polytopes) by Chapoton,
Fomin, and Zelevinsky in [11]. Later in [36], Marsh, Reineke, and Zelevinsky
constructed these generalized associahedra using the representation theory of
quivers and something called the category of decorated representations. Below
is the compatibility graph for this example.

S2

P2 I2

P3

S1 S3

The 5 tilting kQ-modules are given by the triangles in the compatibility graph.
We can re-write this using dimension vectors as follows:
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(0, 1, 0)

(1, 1, 0) (0, 1, 1)

(1, 1, 1)

(1, 0, 0) (0, 0, 1)

Notice that any dimension vector that is a linear combination of any two other
dimension vectors lies on the line connecting the two dimension vectors.

4.1 Cluster Variables

A cluster algebra whose initial quiver is of type A3 has 9 cluster variables, 6
from the cluster character of the 6 indecomposable rigid modules and 3 from the
initial cluster (x1, x2, x3). We can put all these cluster variables in an extended
compatibility graph where we draw an edge between any two clusters variables
that occur in a cluster.

x3 χ(S2) x1

χ(P2) χ(I2)

χ(P3)

χ(S1) χ(S3)

x2

Including the trivial outer triangle that corresponds to the initial cluster, there
are 14 triangles in the compatibility graph. We can visualize cluster mutation as
‘wall crossing’ in the compatibility graph and moreover, from the fact that the
compatibility graph is a manifold, we see that we can get between any two clusters,
or triangles, by a sequence of mutations. Consider the sequence of mutations of
the initial cluster (x1, x2, x3)

µ1→ (χ(x1), x2, x3)
µ3→ (χ(x1), x2, χ(x3)). Then this is

seen in the compatibility graph as the following sequence of ‘wall crossings’ where
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the corresponding triangle has edges given by the cluster variables in the mutated
cluster.

x3 χ(S2) x1

χ(P2) χ(I2)

χ(P3)

χ(S1) χ(S3)

· µ3 →→ ·

x2

·

µ1

↑↑

4.2 Support Tilting Modules and Shifted Projectives

We will now try to understand why there are 14 clusters, but only 5 tilting
modules. To do this, we need to weaken the notion of a tilting module to a support
tilting module which was introduced by Ingalls and Thomas in [32].

Definition 28. A kQ module T = T1⊕T2⊕ · · ·⊕Tk where k ≤ n is called support
tilting if the following hold.

1. T is rigid.

2. The Ti are non-isomorphic.

3. The support of T has k elements.

It is condition 3 that motivates the name support tilting because this condition
stipulates that the module is tilting on its support. Recall that the support of a
module is the set of vertices of the quiver at which the corresponding representation
has a non-zero vector space.

Example 29. Take Q to be 1← 2← 3.

� P1 ⊕ P2 is support tilting.

� Any Si is support tilting.

� P2 ⊕ P3 is not support tilting. Note that |supp(P2 ⊕ P3)| = |{1, 2, 3}| = 3 ̸= 2.
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We will now introduce the algebraic objects that correspond to the initial cluster
variables. A shifted projective Pi[1] is an object with projective presentation Pi →
0 → Pi[1]. These are more naturally realized in the bounded derived category of
mod-Λ where the shift [1] denotes the shift functor inDb(mod-Λ) and the presentation
is a distinguished triangle in the category. After applying the Nakayama functor to
the aforementioned projective presentation, we get 0 → Ii = τPi[1] → Ii → 0, so
we conclude that τ(Pi[1]) = Ii. For Q : 1← 2← 3, the AR quiver with the shifted
projectives is the following:

P3

↘↘

P1[1]

↘↘
P2

↗↗

↘↘

I2

↘↘

↗↗

P2[1]

↘↘
S1

↗↗

S2

↗↗

S3

↗↗

P3[1]

Really what we are looking at here is the ‘cluster category’ intoduced by Buan,
Marsh, Reineke, Reiten, and Todorov in [8].

4.3 Support Tilting Pairs and Extending the Cluster Character

The notion of support tilting (silting) pairs was first introduced in [5] by Broomhead,
Pauksztello and Ploog, though as we will see, the notion of silting objects is older.

Definition 30. A silting pair is a tuple of kQ-modules (T, P ) where T = T1⊕T2⊕
· · · ⊕ Tk is a support tilting module and P = Pj1 ⊕ Pj2 ⊕ · · · ⊕ Pjn−k

is a projective
module with n− k components whose simple tops Sj1 , . . . , Sjn−k

at the vertices of Q
are not in the support of T .

Note the condition on the tops of the projective summands is equivalent to
Hom(P, T ) = 0.

Example 31. Taking Q to be the linear A3 quiver from above, we have the following
silting pairs.

� (P1 ⊕ P3, P3) is a silting pair.

� (S1, P2 ⊕ P3) is a silting pair.

We are now ready to completely explain the compatibility diagram in terms of
algebraic objects. The first part of the bijection in the next theorem was first proven
by Buan, Marsh, Reineke, Reiten, and Todorov in [8]. They moreover showed that
the tilting objects in the cluster category, which are formed by taking direct sums
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of indecomposables and shifted projectives, are in bijection with clusters. Adachi,
Iyama, and Reiten in [1]showed that silting pairs (T1 ⊕ T2 ⊕ · · · ⊕ Tk, Pj1 ⊕ Pj2 ⊕
· · · ⊕ Pjn−k

) and the aforementioned tilting objects are in bijection via the map
(T, P ) ↦→ T1 ⊕ T2 ⊕ · · · ⊕ Tk ⊕Pj1 [1]⊕Pj2 [1]⊕ · · · ⊕Pjn−k

[1]. This is one way to get
the latter part of the below bijection.

Theorem 32. There is a bijection between the collections {rigid indecomposable
kQ-modules M and shifted projectives} and {cluster variables in the corresponding
cluster algebra}. This bijection induces a bijection φ : {silting pairs} → {clusters}
by φ((T, P )) = (χ(T1), χ(T2), . . . , χ(Tk), xj1 , . . . , xjn−k

).

Remark 33. Recall in Example 15, we mentioned that the Euler characteristic of the
quiver grassmannian of any module can be computed using the shortcut 2−2g where
g is the genus of the quiver grassmannian. By the positivity conjecture, Theorem
8, this number is always nonnegative whenever M corresponds to a cluster variable.
The previous theorem allows us to conclude that the genus of the quiver grassmannian
of a rigid module M is at most 1.

We can now define the extended compatibility graph in terms of representation
theory, which was done by Buan, Marsh, Reineke, Reiten, and Todorov in [8], as
follows. We connect Pi[1] and M with an edge if Hom(Pi,M) = 0, we connect M
and N with an edge if Ext(M,N) = Ext(N,M) = 0, and we connect Pi[1] and Pj [1]
with an edge so long as i ̸= j. The extended compatibility graph for the linear A3

quiver is as follows.

P3[1] S2 P1[1]

P2 I2

P3

S1 S3

P2[1]

Notice that in the above extended compatibility graph, a nontrivial edge is only
shared by at most two triangles. For instance if we consider the silting pair (S1 ⊕

******************************************************************************
Surveys in Mathematics and its Applications 18 (2023), 273 – 316

https://www.utgjiu.ro/math/sma

https://www.utgjiu.ro/math/sma/v18/v18.html
https://www.utgjiu.ro/math/sma


Five lectures on cluster theory 297

S3, P2), we are analyzing the triangle with vertices given by S1, S3, and P2[1]. We
see that if we remove P2[1], there is only one other triangle that has two vertices
given by S1 and S3, namely the triangle whose third vertex is P3. This is an example
of the following not algebraically obvious theorem proven by Buan, Marsh, Reineke,
Reiten, and Todorov in [8].

Theorem 34. Given a silting pair (T, P ) and one object in the cluster Ti or Pi[1],
there is exactly one way to replace that object with another object such that the new
collection of objects is a silting pair.

4.4 Stability Pictures

The stability picture, more commonly known as the wall and chamber structure,
is another method of studying quiver algebras. We will now define the stability
picture and see how it is related to the extended cluster diagram. We first need
the notion of stability conditions, which was first studied by King in [34]. In [4],
Bridgeland used these stability conditions to construct a scattering diagram whose
support is the so-called wall and chamber structure which we define below.

Definition 35. For θ ∈ Rn, a non-zero module M ∈ mod-kQ is called θ-stable if
it is orthogonal to θ, that is, θ ·M = θ · dimM = 0, and θ · L < 0 for every proper
submodule L of M . Moreover, a module M orthogonal to θ is called θ-semistable
if θ · L ≤ 0 for every submodule L of M .

We wish to study all the values of θ such that a fixed module M is θ-stable.

Definition 36. The stability space of a kQ-module M is D(M) = {θ ∈ Rn :
M is θ-semistable}.

When D(M) has codimension 1, we call it a wall. It is not the case that the
stability space of every indecomposable module always gives a wall. In the hereditary
case, precisely which modules have walls as their stability space has been worked
out by Chávez in [37]. In the general case, which ‘bricks’ have walls surrounding a
given chamber as their stability space has been worked out by Treffinger in [43].

Definition 37. Let

R = Rn −
⋃

M∈modkQ

D(M)

denote the maximal open set of θ having no θ-semistable non-zero modules. Then a
connected component C of R is called a chamber.

Example 38. Let Q = 1← 2. Then we have three indecomposable modules S1, P2,
and S2 with respective dimension vectors (1, 0), (1, 1), and (0, 1). Given θ ∈ R2,
we have (a, b) · (1, 0) = 0 ⇐⇒ a = 0, so D(S1) = {(a, b) : a = 0}. Similarly,

******************************************************************************
Surveys in Mathematics and its Applications 18 (2023), 273 – 316

https://www.utgjiu.ro/math/sma

https://www.utgjiu.ro/math/sma/v18/v18.html
https://www.utgjiu.ro/math/sma


298 Ray Maresca

D(S2) = {(a, b) : b = 0}. Finally, (a, b) · (1, 1) = 0 ⇐⇒ a = −b. But note
that since S1 ≤ P1, we also require that (a, b) · (1, 0) ≤ 0 ⇐⇒ a ≤ 0. Therefore
D(P2) = {(a, b) : a = −b and a ≤ 0}. Below is a depiction of the wall and chamber
structure, which we also call the stability picture. In this stability picture we
also have the g-vectors of each indecomposable module and shifted projective. Note
that the g-vector of the shifted projective Pi[1] is (0, . . . , 0,−1, 0, . . . , 0) where the
−1 is in the ith postition, since any shifted projective has a projective presentation
Pi → 0→ Pi[1].

D(S1)

D(S1)

D(S2)

D(S2)

D
(P
2 )

g(P1)

g(P2)

g(P2[1])

g(P1[1])

g(I
2 )

Notice in the previous example that the g-vectors of all indecomposable modules
and shifted projectives lie on a wall in the stability picture. This is indeed not a
coincidence and was proven in more generality by Brüstle, Smith, and Treffinger in
[7].

Theorem 39. The g-vectors of indecomposable rigid modules and shifted projectives
lie on walls in the stability picture.

Example 40. Take Q = 1 ← 2 ← 3. Then a stereographic projection of the
stability picture is depicted below. The ith coordinate is negative inside the wall
of the ith simple, it is positive outside the wall, and it is zero on the wall. The
vertices depicted are the g-vectors of the corresponding indecomposable modules and
their shifted projectives. Notice that there are 14 chambers including the trivial outer
chamber, each bounded by three g-vectors of three indecomposable modules or shifted
projectives. This is no coincidence since the objects corresponding to the vertices
of each chamber form a silting pair and hence a cluster. Notice that the stability
picture is actually homeomorphic to the extended compatibility graph that we have
already computed by straightening the walls that connect any two g-vectors.
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D(S1)

D(S2)

D(S3)

D(P2)

D
(P

3
)

D(I2)

g(P3)

g(I2)

g(P3[1])

g(S3)

g(P2)

g(P1)

g(P2[1])

g(P1[1])
g(S2)

In general, there is a bijection between chambers in the stability picture and
silting pairs proven by Brüstle, Smith, and Treffinger in [7].

Theorem 41. The chambers in the stability picture are in bijection with silting
pairs, and hence clusters, where each chamber is sent to the direct sum of the
modules/shifted projectives whose g-vectors enclose said chamber.

It follows from this theorem that two g-vectors that lie on a wall in the stability
picture with no g-vector between them form a rigid pair. Thus the extended
compatibility graph and the stability picture are homeomorphic for any finite dimensional
hereditary algebra. Notice that the wall and chamber structure in the previous
example triangulates the 2-sphere. This was proven true by Demonet, Iyama, and
Jasso in [14] for all algebras that have finitely many silting pairs.

Theorem 42. The compatibility graph and stability picture of a hereditary algebra
with finitely many silting pairs form a triangulation of an n− 1 sphere.
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5 Rigidity

One may question whether the stability picture in Example 40 is accurate; that
is, whether there is nothing inside D(S1) and outside both D(S3) and D(S2) for
instance. The answer to this question is yes, the diagram is accurate and the reason
for this is because ‘rigidity is an open condition’. We will spend this section proving
this fact, but first, we begin with an example.

Example 43. Take k = C and Q : 1→ 2. Then the collection of all representations
of Q with dimension (3, 2) is

RepCQ(3, 2) := {C3 f→ C2} ∼= C6.

The morphism f is given by a 3× 2 matrix with entries in C, say
[
a c e
b d f

]
. The

condition of f being onto is equivalent to this matrix having full rank of 2, which
is further equivalent to the non-vanishing of the minors: ad − bc ̸= 0, cf − de ̸= 0,
and af − be ̸= 0. Since these are polynomial inequalities, {f : f is onto} is a
Zariski open subset of RepCQ(3, 2)

∼= C6. With the usual topology on C6, we see that
{f : f is onto} is open, dense, and has full measure.

If f is onto, then the corresponding representation decomposes:

C3 ↠ C2 ∼= C2 ∼=→ C2 ⊕ C→ 0 = 2P1 ⊕ S1.

Therefore all the f in this open, dense, full measure set give the same rigid module,
namely 2P1 ⊕ S1.

It is this idea that surjectivity of a morphism is a Zariski open condition,
illuminated by the previous example, that will play a key role in showing that the
stability picture in Example 40 is accurate. To continue, we must further develop
the notion of 2-term silting complexes.

5.1 Category of 2-term Silting Complexes

The notion of a silting object in a category was first used studied by Keller and
Vossieck in [33]. The notion of two-term silting complexes was first studied several
years later by Hoshino, Kato, and Miyachi in [25]. Some time later, Adachi, Iyama,
and Reiten in [1]noticed that the zero cohomologies of such complexes connect with
cluster theory and more generally, τ -tilting theory. For more on the topic, we suggest
Hügel’s survey [26].

The category of 2-term silting complexes is a subcategory of the bounded
derived category of kQ. Its objects, called 2-term silting complexes, are segments
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of chain complexes of the form C1
P→ C0 where C0 and C1 are both projective kQ-

modules. The morphisms are morphisms of chain complexes up to chain homotopy.
More concretely, they are pairs of module morphisms f∗ = (f1, f0) up to equivalence
such that the following diagram commutes:

C1

p

↓↓

f1 →→ D1

q

↓↓
C0

f0
→→ D0

Two morphisms f∗ and g∗ are equivalent, or chain homotopic denoted by f∗ ≃
g∗, if there exists a module morphism h : C0 → D1 such that qh = g0 − f0 and
hp = g1 − f1. The following diagram may be useful.

C1

p

↓↓

g1
→→

f1 →→ D1

q

↓↓
C0

h

↗↗

g0
→→

f0 →→ D0

The morphism h is a chain homotopy. The indecomposable objects of this
category are completely described:

Theorem 44. The indecomposable objects in the category of 2-term silting complexes
are

1. Projective presentations of indecomposable kQ-modules M : C1
p
↪→ C0 where

the cokernel of p is M .

2. Objects of the form P → 0 where P is an indecomposable projective, that is,
the projective presentations of the shifted projectives.

Sketch of proof. Let C1
p→ C0 be a 2-term silting complex. Then we have a commutative

diagram:

C1
p →→

↘↘ ↘↘

C0

im(p)
→ ↓

↗↗
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Since kQ is hereditary, we have that im(p) is a projective module, so we have a
projective presentation of M = coker(p) given by 0 → im(p) → C0 → M → 0.
Moreover, the exact sequence 0 → ker(p) → C1 → im(p) → 0 splits by the
projectivity of im(p). Therefore, we can decompose the original 2-term silting
complex into the direct sum of projective presentations of a shifted projective and
M respectively:

C1
p→ C0

∼= ker(p)→ 0⊕ im(p)→ C0.

We will now recall some facts from homological algebra and category theory.

Lemma 45. The projective presentation of a kQ-module M is unique up to chain
homotopy.

Theorem 46. Let C1 → C0 and D1 → D0 be two projective presentations of M and
N respectively. Then Ext1(M,N) is the set of homotopy classes of maps h : C1 →
D0.

What this theorem is saying is that Ext(M,N) is equivalent to the set of all h
up to homotopy of the form

0

↓↓

→→ D1

q

↓↓
C1

p

↓↓

g

↗↗

h →→ D0

↓↓
C0

f

↗↗

→→ 0

In this diagram, we have shifted the projective presentation of N by one. Really
what we are looking at here is Hom(M,N [1]) in the derived category, which is
well known to be Ext(M,N); however, from this diagram we can conclude that
Ext(M,N) is the cokernel of the map

HomkQ(C0, D0)⊕HomkQ(C1, D1)
(p,q)→ HomkQ(C1, D0)

that sends (f, g) ↦→ f ◦ p + q ◦ g. If Ext(M,N) = 0, then this map is surjective, a
Zariski open condition on the maps p and q. We have the following corollary whose
proof is written down by Igusa, Orr, Todorov, and Weyman in [29].
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Corollary 47. Suppose Ext(M,N) = 0. Then there exist open neighborhoods U and
V of p and q respectively in HomkQ(C1, C0) and HomkQ(D1, D0) such that all f ∈ U
and g ∈ V are monomorphisms whose cokernels satisfy Ext(cokerf, cokerg) = 0.

To continue, we require the following lemma originally due to Happel and Ringel
in [23]. A proof of which can also be found in [12].

Lemma 48 (Happel-Ringel). Let A,B be two indecomposable kQ-modules such that
Ext(B,A) = 0. Then any nonzero morphism f : A→ B is either mono or epi.

Proof. Let f : A→ B be a morphism and let C = imf and X = kerf . Then we have
a short exact sequence 0 → X → A

g→ C → 0. This induces a long exact sequence

that contains the chain complex Ext(B/C,X)→ Ext(B/C,A)
g#→ Ext(B/C,C)→ 0

where the last term vanishes because kQ is hereditary. We conclude that the map
g# is a surjection. In particular, this implies that there exists a module D such that
we have the following diagram:

0 →→ A

g

↓↓

→→ D

↓↓

→→ B/C

1
↓↓

→→ 0

0 →→ C →→ B →→ B/C →→ 0

This yields a Mayer-Vietoris sequence in which every third map is an isomorphism,
hence we attain a short exact sequence 0 → A → C ⊕ D → B → 0 ∈ Ext(B,A).
Since Ext(B,A) = 0 by assumption, we have that C ⊕ D ∼= A ⊕ B. We conclude
that C = A in which case f is mono, or C = B, in which case f is epi.

An example of how we can use this lemma is the following.

Example 49. Let Q = 1 ← 2 ← 3. Then there is a map from P2 to I2, namely
(0, 1, 0). This map is neither mono nor epi, so by the Happel-Ringel lemma we
conclude that there is a nontrivial extension of I2 by P1, namely P2 ↪→ S2⊕P3 ↠ I2,
which is an almost split sequence.

Moreover, if we consider a rigid module M , then any map from M to itself
is either mono or epi by the Happel-Ringel lemma. Then we have the following
corollary which can also be found in [12].

Corollary 50. If M is rigid and indecomposable, then End(M) = k; that is, M is
a brick.
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5.2 Rigidity is Open

The next and main result of this section provides some intuition behind why
the term rigid is chosen. Intuitively it comes down to the fact that if you shake
M a little bit, M won’t change. The proof is written by Igusa, Orr, Todorov, and
Weyman in [29].

Theorem 51. Let 0 → P ′ → P → M → 0 be a projective presentation of a rigid
kQ module M . Then there is a Zariski open neighborhood U ⊂ Hom(P ′, P ) such
that all f ∈ U , are mono and Mf := cokerf ∼= M . In other words, If M is rigid,
almost all modules M ′ with the same dimension vector as M are isomorphic to M .

Sketch of Proof. Suppose M is indecomposable, we will prove the general case in
Section 6. By Corollary 47, we know there is an open U ⊂ Hom(P ′, P ) such that all
f, g ∈ U are mono and Ext(Mf ,Mg) = 0. It remains to show that Mf and Mg are
isomorphic. We have two short exact sequences

0→ P ′ → P →Mg → 0

0→ P ′ → P →Mf → 0

These short exact sequences allow us to conclude that the dimension vectors of
Mf and Mg are the same. Moreover, they induce long exact sequences

0→ Hom(Mg,Mf )→ Hom(P,Mf )
g#→ Hom(P ′,Mf )→ 0

0→ Hom(Mf ,Mf )→ Hom(P,Mf )
f#

→ Hom(P ′,Mf )→ 0

where the last term is zero since there are no extensions. Since Mf is rigid and
indecomposable, it is a brick by Corollary 50, so Hom(Mf ,Mf ) = k. This forces
Hom(Mg,Mf ) ̸= 0, so there is a nontrivial morphism h : Mg → Mf that is either
mono or epi by the Happel-Ringel lemma. But since these two modules have the
same dimension vector, it must be an isomorphism.

We will now list some consequences of this theorem, all of which have also been
proven using different methods by Brüstle, and Treffinger in [7] and by Adachi,
Iyama, and Reiten in [1].

Corollary 52. The components Ti of a rigid module have linearly independent g-
vectors and dimension vectors.

Sketch of Proof. Since dimM = CkQg(M) where CkQ is the Cartan matrix, it suffices
to prove this for the g-vectors. For a contradiction, suppose that the components of
a rigid module have linearly dependent dimension vectors. Then

∑
nig(Ti) = 0. We

then collect the positive and negative terms as in the following example. Suppose
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for example we have 2g(T1) + g(T2) = 3g(T3) + g(T4) = (4,−2,−1, 5). Then this

implies we have two maps 2P2 ⊕ P3

f →→
g
→→ 4P1 ⊕ 5P4 such that cokerf = 2T1 ⊕ T2

and cokerg = 3T3 ⊕ T4. By the previous theorem, we have Zariski open U, V ⊂
Hom(2P2 ⊕ P3, 4P1 ⊕ 5P4) such that all h ∈ U have the same cokernel as f and all
j ∈ V have the same cokernel as g. Since U and V are Zariski open, their intersection
is not empty. But then the previous theorem implies that 3T3 ⊕ T4 ∼= 2T1 ⊕ T2, a
contradiction.

The following three facts are immediate consequences from the previous corollary.

Corollary 53. .

1. Rigid modules can have at most n nonisomorphic indecomposable summands.

2. The g-vectors of the components of a silting pair span an n− 1 simplex.

3. Simplices can’t overlap.

In particular, the fact that these simplices don’t overlap allows us to conclude
that the stability pictures we have drawn in Section 4.4 are indeed accurate. Moreover,
it implies that we cannot have simplices of the following form in our extended
compatibility graph.

T1

T2

T3

T4

T5

If we did have such simplices, then the mutation of T1 would not be well defined
since we would not know whether to send it to T4 or T5.

5.3 Stable Barcode

In this subsection, we will present a connection between rigidity and persistent
homology through stable barcodes. For more on the topic we suggest Vejdemo-
Johansson’s survey on the topic [45]. Throughout this subsection, let Q be the
linearly oriented quiver of type An given by 1 ← 2 ← · · · ← n. Recall that the
indecomposable modules are uniquely determined by their dimension vector. This
leads to the notion of interval modules where Mab denotes the indecomposable
module with support [a, b]. We will construct the stable barcode associated to the
rigid modules. To do this, we need a lemma that classifies extensions of interval
modules.
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Lemma 54. Ext(Mcd,Mab) ̸= 0 if and only if one of the following hold:

1. a < c ≤ b < d.

2. b+ 1 = c.

In case 1 we have a short exact sequence given by Mab ↪→ Mad ⊕Mcb ↠ Mcd.
In case 2 we have an exact sequence Mab ↪→ Mad ↠ Mcd. This lemma allows us to
prove the following theorem.

Theorem 55. The unique rigid module with dimension vector v is given by placing
vi spots above the point (i, 0) on the x-axis and joining adjacent spots horizontally.
This is called the stable barcode associated to v.

Example 56. Take v = (3, 4, 2). Then the corresponding rigid module is M22 ⊕
M12 ⊕ 2M13 and the stable barcode is as follows.

M12

M22

2M13

vi : 3 4 2

i : 1 2 3

6 Maximal Green Sequences

In this section we will begin by removing the indecomposability assumption in
the proof of Theorem 51. We begin with a lemma that was first proven by Schofield
in [40], then proved in the language used here by Igusa and Schiffler in [30].

Lemma 57. Let T1, T2, . . . , Tk be indecomposable ext-orthogonal kQ-modules; that
is, Ext(Ti, Tj) = 0 for all i and j. Then the Ti can be ordered such that Hom(Tj , Ti) =
0 for all i < j. Such a sequence of modules is an example of an exceptional
sequence, which is a sequence of modules (M1,M2, . . . ,Mk) such that

Hom(Mj ,Mi) = 0 = Ext(Mj ,Mi)

for all i < j.

Sketch of Proof. It suffices to show that there are no oriented cycles of hom:
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T2

↘↘
T1

↗↗

T3

↙↙
T4

↖↖

If there were such a cycle, by the Happel-Ringel lemma, each map is a monomorphism
or an epimorphism. This forces an epimorphism followed by a monomorphism whose
composition is nonzero and neither mono nor epi, a contradiction of the Happel-
Ringel lemma.

Corollary 58. The set {T1, T2, . . . , Tk} form an exceptional collection, that is, there
exists at least one ordering (Ti1 , Ti2 , . . . , Tik) that is an exceptional sequence.

We are now ready to prove Theorem 51.

Proof Sketch of Theorem 51. Let M be a rigid kQ-module and P1
p→ P0 → M

be a projective presentation of M . By Corollary 47, there exists an open U ⊂
Hom(P1, P0) such that any f, g ∈ U is such that Ext(Mf ,Mg) = 0 where Mf is the
cokernel of f and similarly for g. Therefore, Mf ⊕Mg is rigid. Let E1, E2, . . . Ek

be the list of nonisomorphic indecomposable summands of Mf ⊕Mg. By Lemma
57, we may without loss of generality assume that Hom(Ej , Ei) = 0 for j > i. By

applying Hom(−, Ei) to the short exact sequence 0→ P1
f→ P0 →Mf → 0 and the

analogous one for g, we get the long exact sequences

0→ Hom(Mf , Ei)→ Hom(P0, Ei)→ Hom(P1, Ei)→ 0

0→ Hom(Mg, Ei)→ Hom(P0, Ei)→ Hom(P1, Ei)→ 0

where the last term is zero since Ext(Mf , Ei) = 0 and analogously for g. By
analyzing dimensions we conclude that dim(Hom(Mf , Ei)) = dim(Hom(Mg, Ei)) =
kai . Suppose that Mf = b1E1⊕ b2E2⊕ · · · ⊕ bkEk. Then we have that a1 = b1, a2 =
b2+ c12b1, and so on where cij = dim(Hom(Ei, Ej)). Therefore the ai determine the
bi and we conclude Mf

∼=Mg.

6.1 Sign Coherence of g-vectors

The sign coherence of g-vectors was a conjecture until proven in [22] by Gross,
Hacking, Keel, and Kontsevich for skew-symmetrizable cluster algebras. The now
theorem is as follows.

Theorem 59. For any tilting module T = T1 ⊕ T2 ⊕ · · · ⊕ Tn and any k, the kth
coordinate of g(Ti) have the same sign.
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Example 60. Consider Q : 1 ← 2 ← 3 and T = I2 ⊕ S2 ⊕ P3. Then by placing
the corresponding g-vectors in the first, second, and third column respectively of a
matrix, we get the following. ⎡⎣−1 −1 0

0 1 0
1 0 1

⎤⎦
Note in each row, the signs of all the entries are the same (or zero). The first

row is all negative and the last two are all positive.

The sign coherence of g-vectors is equivalent to the statement that D(Sk) = {x ∈
Rn : xk = 0} does not cut the simplex with vertices g(Ti). That is, we can’t have
the following in the stability picture:

g(T2) D(Sk)

g(T3)
xk>0

xk<0

g(T1)

6.2 c-vectors and Frozen Vertices

Recall the notion of quiver mutation from Definition 2. We can provide an
analogous definition of mutation in terms of the exchange matrix, which can be
found in [6], as follows.

Definition 61. Let B be the exchange matrix for a quiver Q. Then for any 1 ≤
k ≤ n, the mutation of B in the direction k is the matrix µk(B) = [bij ] given
by

bij =

{
−bij i = k or j = k

bij +max(bik, 0)max(bkj , 0)−min(bik, 0)min(bkj , 0) otherwise

Notice that µk(B) is the exchange matrix of µk(Q), hence is skew-symmetric.
We can perform mutations of the exchange matrix in two steps as in the following
example.

Example 62. Recall the exchange matrix from Example 5. Then we can mutate at
2 using the following two step process. Since we are mutating at two, we highlight
both the second row and column.
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⎡⎣ 0 1 −2
−1 0 1
2 −1 0

⎤⎦ Step 1

Compute the entries
outside the ovals

Step 2 Negate the entries
inside the ovals

⎡⎣ 0 1 −1
−1 0 1
1 −1 0

⎤⎦

⎡⎣0 −1 −1
1 0 −1
1 1 0

⎤⎦

We will now extend the exchange matrix of Q by adding the identity matrix to
the bottom of B. This new extended exchange matrix of B will be denoted B̃ = B

C
where C is the identity matrix. We can provide a purely combinatorial description
of how mutation for this new extended exchange matrix works; however, it may be
useful to introduce the notion of frozen vertices which can also be found in [6].

Definition 63. To any quiver Q = ({1, 2, . . . , n}, {α1, α2, . . . αk}), we denote by
Q̌ the quiver with Q̌0 = Q0 ∪ {1′, 2′, . . . , n′} and Q̌1 = Q1 ∪ {α′

i : i′ → i : i ∈
{1, 2, . . . , n}}. The vertices not in Q0 are called frozen vertices since we can’t
mutate Q̌ at these vertices.

Remark 64. Sometimes the notation Q̂ is used. The quiver Q̂ = (Q̌0, Q1 ∪ {α′
i :

i′ ← i : i ∈ {1, 2, . . . , n}}).

We can use this extended quiver to define mutation of the extended exchange
matrix. In particular the mutated extended exchange matrix is just the exchange
matrix of the mutated extended quiver.

Example 65. Let Q = 1 → 2. Then the extended quiver along with a mutation at
vertex 1 is depicted below. Note that the frozen vertices are blue.

1′

↓↓

2′

↓↓

µ1 →→

1′

↘↘

2′

↓↓
1 →→ 2 1

↑↑

2←←
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The extended exchange matrix along with its mutation at one is depicted below.
For i, j ≤ |Q0|, the ijth entry denotes the number of arrows from i to j minus the
number of arrows from j to i. For i > |Q0|, the ijth entry denotes the number of
arrows from (i − |Q0|)′ to j minus the number of arrows from j to (i − |Q0|)′. For
example in the mutated matrix, entry 31 is -1 since in the mutated extended quiver
there are no arrows from 1′ to 1 and there is one arrow from 1 to 1′.⎡⎢⎢⎣

0 1
−1 0

1 0
0 1

⎤⎥⎥⎦ µ1→

⎡⎢⎢⎣
0 −1
1 0

−1 1
0 1

⎤⎥⎥⎦
Definition 66. Let B̃ = B

C be the extended exchange matrix associated to the cluster
algebra with initial seed (Q, x∗). Then the set of c-vectors is the set consisting of
the columns of C along with the columns of any C ′ that arises from a mutation of
B̃. The matrix C along with any mutation of it is called a C-matrix.

6.3 Maximal Green Sequences

We are now ready to define maximal green sequences. As a remark, these
sequences are not named after a person, but the color green. Keller is credited
with coming up with the green/red traffic light coloring system.

Definition 67. A maximal green sequence (MGS) is a sequence of green mutations
starting with B̃ = B

I and ending with all negative c-vectors. A mutation µk is said
to be green if the c-vector ck is positive. If ck is negative, µk is said to be a red
mutation.

Remark 68. The definition of a MGS is dependent on the fact that c-vectors can’t
be both red and green at the same time; that is, they are sign-coherent. This was
proven first by Derksen, Weymen, and Zelevinski for quivers with potential in [15]
then later by Gross, Hacking, Keel, and Kontsevich for general cluster algebras in
[22]. In [19], Fu defined the c-vectors in terms of g-vectors then proved the statement
for all finite dimensional algebras. Fu used a fact that we will see later; that is, the
sign coherence of c-vectors follows from the fact that they are the dimension vectors
of certain indecomposable modules. In [43], Treffinger classifies precisely the modules
whose dimension vectors give positive c-vectors.

Conjecture 69. For Q a quiver with no oriented cycles, there are only finitely many
MGS.

This is known to be true for tame, affine, and wild quivers with at most three
vertices and was proven by Brüstle, Dupont, and Perotin in [6], but unknown in
general.
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Example 70. Let Q be the quiver 1→ 2. Then we have a maximal green sequence
given by ⎡⎢⎢⎣

0 1
−1 0

1 0
0 1

⎤⎥⎥⎦ µ1→

⎡⎢⎢⎣
0 −1
1 0

−1 1
0 1

⎤⎥⎥⎦ µ2→

⎡⎢⎢⎣
0 1
−1 0

0 −1
1 −1

⎤⎥⎥⎦ µ1→

⎡⎢⎢⎣
0 −1
1 0

0 −1
−1 0

⎤⎥⎥⎦
Notice that the c-vectors are the dimension vectors of S1, P1, and S2 or their

negatives. We can also visualize this same maximal green sequence using frozen
vertices as follows.

1′

↓↓

2′

↓↓

µ1 →→

1′

↘↘

2′

↓↓

µ2 →→

1′ 2′

↙↙

µ1 →→

1′ 2′

1 →→ 2 1

↑↑

2←← 1 →→ 2

↑↑↖↖

1

↗↗

2

↖↖

←←

A third way to visualize a MGS is through so-called green paths in the stability
picture, which were introduced by Igusa and Todorov in [31] and further explored
by Igusa in [27]. The walls indicate which c-vectors to mutate. For instance in the
lower path, which corresponds to the MGS shown earlier in this example, we mutate
the c-vector that gives the dimension vectors of S1, P2, and S2 in that order. This
is precisely µ1 ◦ µ2 ◦ µ1 as seen above. Moreover, the below picture shows that there
are only two paths from the all green region to the all red region. Therefore, there
are only two maximal green sequences in this example; the lower path corresponds
to the MGS shown earlier in this example and the MGS corresponding to the upper
path is shown below the stability picture.

D(S1)

D(S2)

D(P2)

All Green

All Red

⎡⎢⎢⎣
0 1
−1 0

1 0
0 1

⎤⎥⎥⎦ µ2→

⎡⎢⎢⎣
0 −1
1 0

1 0
0 −1

⎤⎥⎥⎦ µ1→

⎡⎢⎢⎣
0 1
−1 0

−1 0
0 −1

⎤⎥⎥⎦
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6.4 Relationship Between c-vectors and g-vectors

As we have seen in the previous examples, the c-vectors are dimension vectors of
certain indecomposable modules. In particular, this means they correspond to the
walls in the stability picture and the g-vectors are vectors that lie in these walls.
The following theorem formalizes these two ideas. The first part of the following
theorem was done by Nakanishi and Zelevinski in [38] where the latter part was done
by Fu in [19].

Theorem 71. Let T = ⊕Ti be a silting module. Then the following hold.

1. The g-vectors g(Ti) and c-vectors cj are related by the Nakanishi-Zelevinsky
formula:

g(Ti) · cj = −δij .

2. cj = ±dimMj where g(Ti) ∈ D(Mj) for all i ̸= j.

Sketch of Part of Proof. We will take j = 1 and assume the Nakanishi-Zelevinsky
formula. By Lemma 57, (T2, . . . , Tn) forms an exceptional sequence. By properties of
exceptional sequences, there exists a unique moduleM1 such that (M1, T2, . . . , Tn) is
exceptional. We conclude that Hom(Tj ,M1) = 0 = Ext(Tj ,M1) for all j. Therefore,
g(Tj) ∈ D(M1) ⊂ (dimM1)

⊥. This implies that g(Tj) is orthogonal to the dimension
vector of M1. By the Nakanishi-Zelevinsky formula, c1 = ±dimM1.

It is not the common notation to negate the Kronecker delta in the Nakanishi-
Zelevinsky formula. We will finish this section with a brief explanation of why
the negation of the Kronecker delta makes sense from a representation-theoretic
perspective.

The initial cluster in a cluster algebra is (x1, x2, . . . , xn) and this corresponds
to the silting pair (0, P1[1] ⊕ P2[1] ⊕ · · · ⊕ Pn[1]) where Pi[1] has g-vector −ei. By
definition of a MGS, the initial c-vectors are ci = ei. Therefore, the initial g-vectors
dotted with the initial c-vectors satisfy the formula g(Ti) ·cj = −δij . This relation is
preserved under mutations since clusters are defined to be those rational functions
attained from the initial cluster by a finite sequence of mutations, hence the negation
of the Kronecker delta.
Acknowledgement. The author would like to thank Hipolito Treffinger for the
helpful remarks regarding referencing. He also thanks Kiyoshi Igusa for the helpful
conversations regarding the construction of this document along with giving a wonderful
course on cluster theory.
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