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Abstract. The objective of this paper is to generalize and improve some results in fixed point
theorems in both complete metric space and Menger space. These results are generalizations of the
analogous ones recently proved by Khojasteh [5], Demma [1], Yildirim [13], where we establish a
dynamic information about their other fixed points if there exist i.e the distance between two fixed
point in case of metric space and their equivalent in probabilistic metric space. Some illustrative
examples are furnished, which demonstrate the validity of the hypotheses.

As an application to our main result, we derive a uniqueness fixed point theorem for a self-

mapping under strong conditions.

1 Introduction

One of fundamental theorem in fixed point theory is Banach’s contraction principle
which has many applications in different disciplines, such as computer science,
chemistry, biology, physics and any other branches of mathematics.

In the other way, Menger [7] introduced a new generalisation of the metric space,
called Menger space. The important development of fixed point theory in this spaces
was due to Sehgal and Bharucha-Reid [11] and Schweizer-Sklar [10]. Since then there
has been a massive growth of fixed point theorems using certain conditions on the
mappings or on the space itself. For some results of fixed and common fixed point
in the setting of Menger spaces see [12, 3, 4, 9] and their references.

In this paper we aims to generalized the theorem in [5] in the both metric and
Menger spaces and we give some examples to illustrate our studies. Our paper is
organized as follows:

The first section, Preliminaries, we recall some basic notions of Menger space,
in the second section we present our main results which divided into two parts: in
the first one we generalize a theorem in [5] when we found a better estimation than
their result and in second part we try to generalize this last result and our previous
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318 B. Laouadi et al.

results in [6] to the Menger space case. Some illustrative examples are presented
too.

2 Preliminaries

We recall some well known notions and definition of this spaces.

Definition 1. [2]
A distribution function (on [−∞,+∞]) is a function F : [−∞,+∞] → [0, 1]

which is left-continuous on R, non-decreasing and F (−∞) = 0, F (+∞) = 1.
We denote by ∆ the family of all distribution functions on [−∞,+∞].

Definition 2. [2]
A distance distribution function F : [−∞,+∞] → [0, 1] is a distribution function

with support contained in [0,+∞].
The family of all distance distribution functions will be denoted by ∆+. We denote
D+ = {F |F ∈ ∆+, lim

t→+∞
F (t) = 1}.

Since any function from ∆+ is equal 0 on [−∞, 0] we can consider the set ∆+

consisting of non-decreasing functions F defined on [0,+∞] that satisfy F (0) = 0
and F (+∞) = 1.

Moreover, D+ then consists of non-decreasing functions F defined on [0,+∞)
that satisfy F (0) = 0 and lim

t→+∞
F (T ) = 1.

The class D+ will play the important role in the probabilistic fixed point theorems.
H is a special element of D+ defined by

H(t) =

{
0 if t ≤ 0,

1 if t > 0.

If X is a non-empty set, F : X ×X → D+ is called a probabilistic distance on
X and F (x, y) is usually denoted by Fx,y.

Definition 3. [11] A probabilistic metric space (PM-space) is a pair (X,F) where
X is a set and F is a function defined on X×X into the set of distribution functions
F such that for all x, y and z in X, for all s, t > 0

1. Fx,y(0) = 0;

2. Fx,y(t) = H(t) iff x = y;

3. Fx,y(t) = Fy,x(t);

4. If Fx,y(t) = 1 and Fy,z(s) = 1 then Fx,z(s+ t) = 1.

Remark 4. Let (X, d) be a metric space. The distribution function Fx,y defined by
the relation Fx,y(t) = H(t− d(x, y)) induces a PM-space.
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Definition 5. [2]
A triangular norm ∗ (t-norm for short) is a binary operation on the unit interval

[0, 1], which is commutative, associative, non-decreasing in its second component and
for all x ∈ [0, 1] x ∗ 1 = x.

Remark 6. The monotonicity of a t-norm ∗ in its second component is, together
with the commutativity, equivalent to the (joint) monotonicity in both components,
i.e., to

x1 ∗ y1 ≤ x2 ∗ y2 whenever x1 ≤ x2 and y1 ≤ y2.

Definition 7. [11] A Menger PM-space is a triplet (X,F , ∗) where (X,F) is a
PM-space and ∗ is a t -norm with the following condition:

Fx,z(t+ s) ≥ Fx,y(t) ∗ Fy,z(s)

for all x, y, z ∈ X and s, t > 0.
This inequality is known as Menger’s triangle inequality.

Definition 8. [8] A sequence (xn)n∈N in a Menger PM space (X,F , ∗) is said

1. to converge to a point x in X if for every ϵ > 0 and λ > 0, there is an integer
n0 such that Fxn,x(ϵ) > 1− λ for all n ≥ n0.

2. to be Cauchy if for each ϵ > 0 and λ > 0, there is an integer n0 such that
Fxn,xm(ϵ) > 1− λ for all n,m ≥ n0.

3. to be complete if every Cauchy sequence in it converges to a point of it.

We present the following famous lemma that will help us prove our results later.

3 Main results

The following is the first our main result.

Theorem 9. Let (X, d) be a complete metric space and let T be a self mapping
in X. Suppose there exist four positive real number a, b, c, f , e ∈ R+ such that
a ≤ min{c, f} and for all x, y ∈ X

d(Tx, Ty) ≤ ad(x, Ty) + bd(y, Tx)

cd(x, Tx) + fd(y, Ty) + e
d(x, y). (3.1)

Then,

1. T has at least one fixed point ẋ ∈ X;

2. every Picard sequence (xn)n∈N converges to a fixed point;
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3. if T has two distinct fixed points ẋ, ẏ in X then, d(ẋ, ẏ) ≥ e

a+ b
.

Proof. Let (xn)n∈N be a Picard sequence(xn+1 = Txn).
Step 1: Let’s show that (xn)n∈N is a Cauchy sequence.
By putting x = xn−1 and y = xn in inequality (3.1) we find,

d(xn, xn+1) ≤ ad(xn−1, xn+1)

cd(xn−1, xn) + fd(xn, xn+1) + e
d(xn−1, xn)

≤ ad(xn−1, xn) + ad(xn, xn+1)

cd(xn−1, xn) + fd(xn, xn+1) + e
d(xn−1, xn)

≤ ad(xn−1, xn) + ad(xn, xn+1)

min{c; f}
(
d(xn−1, xn) + d(xn, xn+1)

)
+ e

d(xn−1, xn)

We denote that θn =
ad(xn−1, xn) + ad(xn, xn+1)

min{c; f}
(
d(xn−1, xn) + d(xn, xn+1)

)
+ e

for all n ∈ N.

Since a ≤ min{c, f} then 0 ≤ θn < 1, furthermore, the sequence (θn)n∈N is
decreasing because for all n ∈ N

θn+1 − θn =
ae
[
d(xn+1, xn+2)− d(xn−1, xn)

][
min{c; f}(d(xn, xn+1) + d(xn+1, xn+2)) + e

]
× 1[

min{c; f}(d(xn−1, xn) + d(xn, xn+1)) + e
]

< 0.

On the other hand we have,

d(xn, xn+1) ≤ θnd(xn−1, xn)

≤ θnθn−1d(xn−2, xn−1)

...

≤ θnθn−1 · · · θ1d(x0, x1)
≤ θn1 d(x0, x1).

By passaging to the limit with n → +∞, we find

lim
n→+∞

d(xn, xn+1) = 0.

Now for all n, m ∈ N such that m > n we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1,m)

≤
m−1∑
k=n

(θkθk−1 · · · θ1)d(x0, x1)
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Suppose that uk = θkθk−1 · · · θ1. Since

lim
n→+∞

uk+1

uk
= 0 (3.2)

thus
∑+∞

k=1 uk is convergent. It means that,

lim
n,m→+∞

m−1∑
k=n

θkθk−1 · · · θ1 = 0 (3.3)

then (xn)n∈N is a Cauchy sequence in X.
Since the metric space (X, d) is complete, there exit ẋ ∈ X such that

lim
n→+∞

xn = ẋ.

Step 2: Check that ẋ is a fixed point of T .
By putting x = ẋ, y = xn in inequality (3.1), we find,

d(T ẋ, xn+1) ≤
ad(ẋ, xn+1) + bd(xn, T ẋ)

cd(ẋ, T ẋ) + fd(xn, xn+1) + e
d(ẋ, xn). (3.4)

By taking limit on both sides of (3.4), we have d(T ẋ, ẋ) = 0 that mean T ẋ = ẋ.

Step 3: Suppose that T have two fixed points ẋ, ẏ in X. Find the distance
between these two fixed points.

By putting x = ẋ, y = ẏ in inequality (3.1), we find,

d(ẋ, ẏ) ≤ ad(ẋ, ẏ) + bd(ẏ, ẋ)

cd(ẋ, ẋ) + fd(ẏ, ẏ) + e
d(ẋ, ẏ)

≤ (a+ b)d(ẋ, ẏ)

e
d(ẋ, ẏ).

Then, d(ẋ, ẏ) ≥ e

a+ b
.

Example 10. Let X = {0; 1; 2} and let d : X ×X −→ [0; +∞) be defined by

d(0; 1) = 2; d(1; 2) = 3; d(0; 2) = 3.5.

d(0; 0) = d(1; 1) = d(2; 2) = 0

d(x; y) = d(y;x);∀x, y ∈ X.

(X, d) is a complete metric space. Let T : X −→ X be a self mapping defined by

T (0) = 0, T (1) = 1, T (2) = 0.
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We choose a = 1, b = 1, c = 1, f = 1, e = 4, then, we have

d(T (0), T (1)) = 2 ≤ d(0, T (1)) + d(1, T (0))

d(0, T (0)) + d(1, T (1)) + 4
d(0, 1) = 2,

d(T (1), T (2)) = 2 ≤ d(1, T (2)) + d(2, T (1))

d(1, T (1)) + d(2, T (2)) + 4
d(1, 2) = 2,

d(T (0), T (2)) = 0 ≤ d(0, T (2)) + d(2, T (0))

d(0, T (0)) + d(2, T (2)) + 4
d(0, 2) =

49

30
.

Therefore, T satisfies all the conditions of Theorem 9. Also, T has two distinct
fixed point {0, 1} and d(0; 1) = 2 ≥ e

a+b = 2.

Remark 11. On remark that this estimation is the better one this due to the
choosing of the constant a, b, c, f, e.

In the following, we try to generalised our last theorem for the case of Menger
spaces. Then, we are looking for dynamic information about the set of fixed points
of such mapping.

Theorem 12. Let (X,F,min) be a complete Menger space. Let T be a self mapping
in X.
If exists four positives real numbers a, b, c, d (only one of a or b can be null) such

that max
{a+ b

c+ d
;
b

d

}
< 1 and for all x, y ∈ X, t > 0,

1− FTx,Ty(t) ≤
amin{Fx,Tx(

t
2);Fy,Ty(

t
2)}+ b

cmin{Fx,Ty(t);Fy,Tx(t)}+ d
(1− Fx,y(t)). (3.5)

Then,

1. T has at least a fixed point in X;

2. all Picard sequence (Txn)n∈N converges to a fixed point;

3. if T has two fixed points ẋ, ẏ in X then, for all t > 0;

Fẋ,ẏ(t) ≤ max{a+ b− d

c
; 0} or Fẋ,ẏ(t) = 1.

Proof. Let (xn)n∈N be a Picard sequence with an arbitrary x0 ∈ X and xn+1 = Txn,
n ∈ N.

Step1: Let’s show that (xn)n∈N is a Cauchy sequence.
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By putting x = xn−1, y = xn in inequality (3.5), we find,

1− FTxn−1,Txn(t) ≤
amin{Fxn−1,xn(

t
2);Fxn,xn+1(

t
2)}+ b

cmin{Fxn−1,xn+1(t);Fxn,xn(t)}+ d
(1− Fxn−1,xn(t))

≤
aFxn−1,xn+1(t) + b

cFxn−1,xn+1(t) + d
(1− Fxn−1,xn(t))

≤ max
{a+ b

c+ d
;
b

d

}
(1− Fxn−1,xn(t))

...

≤
(
max

{a+ b

c+ d
;
b

d

})n
(1− Fx0,x1(t)).

We denote θn(t) =
aFxn−1,xn+1(t) + b

cFxn−1,xn+1(t) + d
.

Let n,m ∈ N such that m ≥ n, we have,

Fxn,xm(t) ≥ min{Fxn,xn+1(
t

m− n
);Fxn+1,xn+2(

t

m− n
); · · · ;Fxm−1,xm(

t

m− n
)}.
(3.6)

So,

1− Fxn,xm(t) ≤ max

{
1− Fxn,xn+1(

t
m−n); 1− Fxn+1,xn+2(

t
m−n);

· · · ; 1− Fxm−1,xm(
t

m−n)

}

≤ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θn(

t
m−n)θn−1(

t
m−n) · · · θ1(

t
m−n);

θn+1(
t

m−n)θn(
t

m−n) · · · θ1(
t

m−n);
...

θm−1(
t

m−n)θm−2(
t

m−n) · · · θ1(
t

m−n)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
×(1− Fx0,x1(

t

m− n
))

≤ θn(
t

m− n
)θn−1(

t

m− n
) · · · θ1(

t

m− n
)(1− Fx0,x1(

t

m− n
))

≤ max
{a+ b

c+ d
;
b

d
}n(1− Fx0,x1(

t

m− n
))

≤ max{a+ b

c+ d
;
b

d
}n

Taking limit n,m → +∞ we deduce

lim
n,m→+∞

Fxn,xm(t) = 1 ∀t > 0. (3.7)

Then, (xn)n∈N is a Cauchy sequence.
As the space X is complete, there exits ẋ ∈ X such that lim

n→+∞
xn = ẋ.
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Step 2: Check that ẋ is a fixed point of T .
By putting x = ẋ, y = xn in inequality (3.5), we find,

1− FT ẋ,Txn(t) ≤
amin{Fẋ,T ẋ(

t
2);Fxn,xn+1(

t
2)}+ b

cmin{Fẋ,xn+1(t);Fxn,ẋ(t)}+ d
(1− Fẋ,xn(t))

Passing to the limit n −→ +∞,

1− FT ẋ,ẋ(t) ≤
aFẋ,T ẋ(

t
2) + b

cFẋ,ẋ(t) + d
(1− Fẋ,ẋ(t))

lim
n→+∞

FT ẋ,ẋ(t) = 1 ∀t > 0.

Then, T ẋ = ẋ. So, T has at least one fixed point in X.
Step 3: Let ẋ, ẏ ∈ X be two fixed point of T .

By putting x = ẋ, y = ẏ in inequality (3.5), we find,

1− FT ẋ,T ẏ(t) ≤
a+ b

cFẋ,ẏ(t) + d
(1− Fẋ,ẏ(t))

then,
cF 2

ẋ,ẏ(t) + (d− c− a− b)Fẋ,ẏ(t) + a+ b− d ≥ 0 for all t > 0,

then

Fẋ,ẏ(t) ≤ max{a+ b− d

c
; 0} or Fẋ,ẏ(t) = 1.

Theorem 13. Let (X,F,min) be a complete Menger space. Let T be a self mapping
in X.
If exists four positives real numbers a, b, c, d (only one of a or b can be null) such
that a+ b < d and satisfying the inequality (3.5) then T has a unique fixed point in
X.

Proof. The demonstration of the existence of fixed point is mentioned in the lines
of proof of theorem 12.

Next we will show the uniqueness of the fixed point of T .
Let ẋ, ẏ ∈ X two fixed point of T . Replacing x = ẋ, y = ẏ in inequality (3.5) we

find

1− FT ẋ,T ẏ(t) ≤
a+ b

cFẋ,ẏ(t) + d
(1− Fẋ,ẏ(t)).

Then,

cF 2
ẋ,ẏ(t) + (d− c− a− b)Fẋ,ẏ(t) + a+ b− d ≥ 0 for all t > 0,

which means Fẋ,ẏ(t) = 1 for all t > 0. Then ẋ = ẏ.
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Example 14. Let X = {0, 1, 2} be a set associated with the following distributions
functions:

F0,1(t) = F1,2(t) =

{
0 if t ≤ 2,
1 if t > 2.

F0,2(t) =

⎧⎨⎩
0 if t ≤ 0,
1
2 if 0 < t ≤ 3,
1 if t > 3.

Fx,x(t) = H(t) for allx ∈ Xfor allt ∈ R,

Fx,y(t) = Fy,x(t) for allx, y ∈ X for all t ∈ R.

(X,F ,min) is a Menger space because all conditions in definition 3 and definition
7 are satisfies. Conditions 1-3 of definition 3 are obviously verified.

Now, it remains to prove the fourth condition:

� Suppose that F0,1(t) = 1 and F0,2(t) = 1 then, t > 2 and s > 3 then, t+ s > 5,
then F1,2(t+ s) = 1.

� Suppose that F0,2(t) = 1 and F1,2(t) = 1 then, t > 3 and s > 2 then, t+ s > 5,
then F0,1(t+ s) = 1.

� Suppose that F0,1(t) = 1 and F1,2(t) = 1 then, t > 2 and s > 2 then, t+ s > 4,
then F0,2(t+ s) = 1.

Also, the Menger’s triangle inequality is satisfied because for all t, s > 0,

F0,2(t+ s) ≥ min{F0,1(t);F1,2(s)} (3.8)

F0,1(t+ s) ≥ min{F0,2(t);F1,2(s)} (3.9)

F1,2(t+ s) ≥ min{F0,1(t);F0,2(s)} (3.10)

In addition, (X,F ,min) is a complete Menger space. Let T be a self mapping
defined on X as,

T (0) = 0 T (1) = 1 T (2) = 0

Now, we check the validity of the inequality (3.5). By choosing a = c = d = 1

and b = 1
2 , it is clear that

a+ b

c+ d
< 1 and

b

d
< 1. If x = y, the inequality (3.5) was

verified.

For x = 0 and y = 1 we have

1− FT (0),T (1)(t) = 1− F0,1(t) =

{
1 if t ≤ 2,
0 if t > 2.
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amin{F0,T (0)(
t
2);F1,T (1)(

t
2)}+ b

cmin{F0,T (1)(t);F1,T (0)(t)}+ d
(1− F0,1(t)) =

1.5

F0,1(t) + 1

=

{
1.5 if t ≤ 2,

0.75 if t > 2.

So,

1− F0,1(t) ≤
1.5

F0,1(t) + 1
for all t > 0

For x = 0 and y = 2,

1− FT (0),T (2)(t) = 1− F0,0(t)

= 0 ≤
min{F0,T (0)(

t
2);F2,T (2)(

t
2)}+

1
2

min{F0,T (2)(t);F2,T (0)(t)}+ 1
(1− F0,2(t)).

For x = 1 and y = 2,

1− FT (1),T (2)(t) = 1− F1,0(t) =

{
1 if t ≤ 2,
0 if t > 2.

amin{F1,T (1)(
t
2);F2,T (2)(

t
2)}+ b

cmin{F1,T (2)(t);F2,T (1)(t)}+ d
(1− F1,2(t)) =

F0,2(
t
2) +

1
2

F1,2(t) + 1
(1− F1,2(t))

=

⎧⎨⎩
1
2 if t ≤ 0,
1 if 0 < t ≤ 2,
0 if t > 2.

So,

1− F1,0(t) ≤
F0,2(

t
2) +

1
2

F1,2(t) + 1
(1− F1,2(t)) for all t > 0.

Then, all conditions of theorem 12 were verified. Then, T has at least one fixed
point in X (exactly it has two fixed point 0 and 1). Over more, F0,1(t) ≤ 1

2 or
F0,1(t) = 1.

Also, every Picard sequence (Txn)n∈N converge to a fixed point.
If x0 = 0, Txn = 0 for all n ∈ N, it converge to 0.
If x0 = 1, Txn = 1 for all n ∈ N, it converge to 1.
If x0 = 2, Txn = 0 for all n ∈ N, it converge to 0.

Open Question. Very interesting results can be obtain in the same frame of
Menger space, for the case of multivalued operators.
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4 Conclusions

Our paper generalize and discuss some results of related literature, given by
Khojasteh [5], Demma [1], Yildirim [13] for both, complete metric space and Menger
space. We established a dynamic information about their other fixed points if there
exist i.e. the distance between two fixed point in case of metric space and their
equivalent in probabilistic metric space. To strength our results some interesting
examples are given.
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