Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 19 (2024), 1 -- 40
This work is licensed under a Creative Commons Attribution 4.0 International License.A NOTE ON THE BICATEGORY OF LANDAU-GINZBURG MODELS (ℒ𝒢K)
Yves Baudelaire Fomatati
Abstract. The bicategory of Landau-Ginzburg models denoted by ℒ𝒢K possesses adjoints and this helps in explaining a certain duality that exists in the setting of Landau-Ginzburg models in terms of some specified relations. The construction of ℒ𝒢K is reminiscent of, but more complex than, the construction of the bicategory of associative algebras and bimodules. In this paper, we review this complex but very inspiring construction in order to expose it more to pure mathematicians. In particular, we spend some time explaining the intricate construction of unit morphisms in this bicategory from a new vantage point. Besides, we briefly discuss how this bicategory could be constructed in more than one way using the variants of the Yoshino tensor product. Furthermore, without resorting to Atiyah classes, we prove that the left and right unitors in this bicategory have direct right inverses but do not have direct left inverses.
2020 Mathematics Subject Classification: 15A23, 18N10.
Keywords: Bicategory of Landau-Ginzburg models, Matrix factorizations, tensor product, polynomials
References
L. S. Barbosa. A brief introduction to bicategories. Techn. Report DI-PURe-03, (2003) 12(01).
M. Bökstedt and A. Neeman. Homotopy limits in triangulated categories. Compositio Mathematica, 86(2) (1993), 209-234. MR1214458. Zbl 0802.18008.
A. R. Camacho. Matrix factorizations and the Landau-Ginzburg/conformal field theory correspondence. (2015), arXiv preprint arXiv: 1507.06494.
N. Carqueville, D. Murfet. A toolkit for defect computations in Landau-Ginzburg models. In Proc. Symp. Pure Math, (2015) volume 90, page 239. Zbl 1356.81195.
N. Carqueville, D. Murfet. Adjunctions and defects in Landau-Ginzburg models. Advances in Mathematics, 289 (2016), 480-566. MR3439694. Zbl 1353.18004.
K. Conrad. Tensor products. Notes of course, available on-line, 2016. https://kconrad.math.uconn.edu/blurbs/linmultialg/tensorprod.pdf.
D. S. Dummit and R. M. Foote. Abstract algebra, volume 3. Wiley Hoboken, 2004. Zbl 0751.00001.
T. Dyckerhoff et al..Compact generators in categories of matrix factorizations. Duke Mathematical Journal, 159(2) (2011), 223-274. MR2824483. Zbl 1252.18026.
T. Dyckerhoff, D. Murfet, et al.. Pushing forward matrix factorizations. Duke Mathematical Journal, 162(7) (2013), 1249-1311. MR3079249. Zbl 1273.14014.
D. Eisenbud. Homological algebra on a complete intersection, with an application to group representations. Transactions of the American Mathematical Society 260(1) (1980), 35-64. MR570778. Zbl 0444.13006.
Y. Fomatati. Necessary conditions for the existence of morita contexts in the bicategory of Landau-Ginzburg models. (2021), arXiv preprint arXiv:2106.10490.
Y.B. Fomatati. Multiplicative Tensor Product of Matrix Factorizations and Some Applications. Universite d'Ottawa/University of Ottawa, 2019.
Y.B. Fomatati. On tensor products of matrix factorizations. Journal of Algebra 609 (2022), 180-216. MR4455394. Zbl 1496.15010.
R. A. Horn, and C. R. Johnson. \textslMatrix analysis, 2nd ed. Cambridge university press, 2013. MR2978290. Zbl 1267.15001.
B. Keller, D. Murfet and M. Van den Bergh. On two examples by Iyama and Yoshino. Compositio Mathematica, 147(2) (2011), 591-612. MR2776613. Zbl 1264.13016.
M. Khovanov and L. Rozansky. Matrix factorizations and link homology ii. Geometry & Topology, 12(3) (2008), 1387-1425. Zbl 1146.57018.
G. J. Leuschke and R. Wiegand. Cohen-Macaulay representations. r American Mathematical Soc. 181, 2012. MR2919145. Zbl 1252.13001.
A. Neeman. Triangulated categories. Princeton University Press, 2001. Zbl 0974.18008
H. Onnes. Akad. van Wetenschappen (Amsterdam), 14, 113 (1911).
Schreyer, F.-O. Finite and countable cm-representation type. In Singularities, representation of algebras, and vector bundles, (1987), 9–34. Springer. MR915165. Zbl 0719.14024.
R. A. Smith (2011). Introduction to vector spaces, vector algebras, and vector geometries. arXiv preprint arXiv:1110.3350.
D. R. Tilley. Superfluidity and superconductivity. Routledge, 2019.
Yoshino Y. Tensor products of matrix factorizations. Nagoya Mathematical Journal 152 (1998), 39-56. MR1659389. Zbl 0930.13017.
Y. Yoshino. Maximal Cohen-Macaulay Modules Over Cohen-Macaulay Rings, volume 146, Cambridge University Press. 1990. MR1079937. Zbl 0745.13003.
Yves Baudelaire Fomatati
Department of Mathematics and Statistics, University of Ottawa
75 Laurier Ave E, Ottawa, ON K1N 6N5, Canada.
e-mail: yfomatat@uottawa.ca
and
Department of Mathematics, HTTC Bambili, The University of Bamenda, Cameroon.