Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 19 (2024), 41 -- 55
This work is licensed under a Creative Commons Attribution 4.0 International License.ESTIMATE ON LOGARITHMIC COEFFICIENTS OF KAMALI-TYPE STARLIKE FUNCTIONS ASSOCIATED WITH FOUR-LEAF SHAPED DOMAIN
T. Panigrahi, E. Pattnayak and R. M. El-Ashwah
Abstract. In the present paper, the authors introduce a new subclass namely; RL(φ4L, ν) of Kamali-type starlike functions defined in the open unit disk D connected with four-leaf shaped domain. We investigate the bounds of some initial coefficients, Fekete-Szegö inequality and other results of logarithmic coefficients for the function belonging to above class. Relevant connections of the results derived in this paper with those of earlier works are indicated.
2020 Mathematics Subject Classification: Primary: 30C45; Secondary: 30C50, 30C80
Keywords: Analytic function; Starlike function; Subordination; Fekete-Szegö functional; Four-leaf shaped domain
References
D. Alimohammadi, E. A. Adegoni, T. Bulboaca and N. E. Cho, Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions, J. Function Spaces, 2021, Art. ID 6690027, 7 pages. MR4277459, Zbl 1475.30028.
A. Alotaibi, M. Arif, M. A. Alghamdi and S. Hussain, Starlikeness associated with cosine hyperbolic function, Mathematics, 8(7) (2020), 1118; https://doi.org/10.3390/math8071118.
A. S. Alshehry, R. Shah and A. Bariq, The second Hankel determinant of logarithmic coefficients for starlike and convex functions involving four-leaf-shaped domain, J. Function Spaces, 2022. https://doi.org/10.1155/2022/2621811. MR4492851, Zbl 1503.30033.
V. V. Andreev and P.L. Duren, Inequalities for logarithmic coefficients of univalent functions and their derivatives, Indiana Univ. Math. J., 37(4) (1988),721-733. MR982827, Zbl 0642.30017.
N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike function associated with the sine function, Bull. Iran Math. Soc., 45(2019), 213-232. MR3913990, Zbl 1409.30009.
Q. Deng, On the logarithmic coefficients of Bazilevi\brevec functions, Appl. Math. Comput., 217(12)(2011), 5889-5894. MR2770208, Zbl 1209.30005.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
D. Girela, Logarithmic coefficients of univalent functions, Annales-Academiae Scientiarium Fennicae Series A1 Mathematica, 25(2)(2000) 337-350.
W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Annales Polonici Mathematici, 23(2)(1970), 159-177. MR267103, Zbl 0199.39901.
B.Kowalczyk and A. Lecko, Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha, Bull. Malaysian Math. Sci. Soc., 45(2022), 727-740. MR4380027, Zbl 1486.30040.
B. Kowalczyk and A. Lecko, Second Hankel determinant of logarithmic coefficients of convex and starlike functions, Bull. Aust. Math. Soc., 105(3) (2022), 458-467. MR4419590, Zbl 1492.30040.
S. S. Kumar and K. Arora, Starlike functions associated with a petal shaped domain(2020), arXiv preprint 2010.10072. MR4457452, Zbl 2208.14644.
R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2) (1983), 251-257. https://doi.org/10.1090/20002-9939-1983-0681830. MR681830, Zbl 0488.30010.
W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceeding of the International Conference on Complex Analysis, Tianjin, China, 1992. MR1343506, Zbl 0823.30007.
R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38(2015), 365-386. MR 3394060, Zbl 1312.30019.
A. Naik and T. Panigrahi, Upper bound on Hankel determinant for bounded turning function associated with S\breveal\breveaean-difference operator, Surveys Math. Appl., 15(2020), 525-543. MR4165814, Zbl 1470.30015.
J. W. Noonan and D. K. Thomas, On the second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc., 223(1976), 337-346. MR0422607, Zbl 0346.30012.
K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roumaine Math. Pures Appl., 28(1983), 731-739. MR725316, Zbl 0524.30008.
M. Obradovi\brevec, S. Ponnusamy and K. J. Wirths, Logarithmic coefficients and a coefficient conjecture for univalent functions, Monatshefte f\ddotur Mathematik 185(3)(2018) 489-501. MR3767731, Zbl 1400.30027.
T. Panigrahi, G. Murugusundaramoorthy and E. Pattnayak, Coefficient bounds for a family of analytic functions linked with a petal-shaped domain and applications to Borel Distribution, Sahand Commun. Math. Anal., 20(3)(2023), 33-50. Zbl 7758053.
C. Pommerenke, On the Coefficient and Hankel determinants of univalent functions, J. London Math. Soc., 1(1) (1966), 111-122. MR 185105, Zbl 0138.29801.
C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14(1), (1967), 108-112. MR215976, Zbl 0165.09602.
C. Pommerenke, Univalent Function, G\ddotottingen, Germany, Vanderhoeck and Ruprecht, 1975.
V. Ravichandran and S. Verma, Borne pour le cinquieme coefficient des fonctions toilees, Comptes Rendus Mathematique, 353(6)(2015), 505-510.
O. Roth, A sharp inequality for the logarithmic coefficients of univalent functions, Proced. American Math. Soc., 135(7)(2007), 2051-2054. MR2299479, Zbl 1110.30012.
K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 27(2016), 923-939. MR3536076, Zbl 1352.30015.
L. Shi, H. M. Srivastava, M. Arif, S. Hussain and H. Khan, An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 11(2019), Art. ID: 598. Zbl 1425.30021.
L. Shi, H. M. Srivastava, A. Rafiq, M. Arif and M. Ihsan, Results on Hankel determinants for the inverse of certain analytic functions subordinated to the exponential functions, Mathematics, 10(2022), Art. ID: 3429, 1-15.
L. Shi, M. Arif, M. Raza and M. Abbas, Hankel determinant containing logarithmic coefficients for bounded turning functions connected to a three leaf-shaped domain, Mathematics, 10(16)(2022), 2924; https://doi.org/10.3390/math10162924.
L. Shi, M. Arif, H. M. Srivastava and M. Ihsan, Sharp bounds on the Hankel determinant on the inverse functions for certain analytic functions, J. Math. Inequal., 17(3)(2023), 1129-1143. Zbl 7753917.
J. Sok\acuteol and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zesz. Nauk Politech. Rzesz. Mat. Fiz., 19(1996), 101-105. Zbl 0880.30014.
H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad and S. Hussain, Fekete-Szegö type problems and their applications for subclass of q-starlike functions with respect to symmetrical points, Mathematics, 8(2020), Art. ID: 842.
H. M. Srivastava, B. Khan, N. Khan, M.Tahir, S. Ahmad and N. Khan, Upper bound of the third Hankel determinant for a subclass of q-starlike function associated with q-exponential function, Bull. Sci. Math., 167(2021), Art. ID: 102942. Zbl 1459.05020.
H. M. Srivastava, M. Kamali and A. Urdaletova, A study of the Fekete-Szegö functional and coefficient estimates for subclasses of analytic function satisfying a certain subordination condition and associated with the Gegenbauer polynomials, AIMS Math., 7(2)(2021), 2568-2584.
H. M. Srivastava, G. Kaur and G. Singh, Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turning involving cardioid domain, J. Nonlinear Convex Anal., 22(3)(2021), 511-526. MR 4242274, Zbl 1498.30014.
H. M. Srivastava, T. G. Shaba, G. Murugusundaramoorthy, A. K. Wanas and G. I. Oros, The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions invovling Hohlov operator, AIMS Math., 8(1)(2022), 340-360.
H. M. Srivastava, S. Kumar, V. Kumar and N. E. Cho, Hermitian-Toeplitz and Hankel determinant for starlike functions associated with a rational function, J. Nonlinear Convex Anal., 23(12)(2022), 2815-2833. MR 4524975, Zbl 1499.30172.
H. M. Srivastava, G. Murugusundaramoorthy and T. Bulboachecka, The second Hankel determinant for subclasses of bi-univalent function associated with a Nephroid domain, Rev. Real Acad. Cienc, Exactas Fis. Naur. Ser. A Mat., 116(2022), Art. ID:145, 1-21. MR4450203, Zbl 1496.30012.
H. M. Srivastava, K. Alshammari and M. Darus, A new q-fractional integral operator and its application to the coefficient problem involving the second Hankle determinant for q-starlike and q-convex functions, J. Nonlinear Var. Anal., 7(6)(2023), 985-994.
H. M. Srivastava, B. Rath, K. Sanjay Kumar and D. Vamshree Krishna, Some sharp bounds of the third order Hankel determinant for the inverse of the Ozaki type close-to-convex functions, Bull. Sci. Math., 191(2024), Art. ID: 103381. MR4685829
K. Ullah, H. M. Srivastava, A. Rafiq, M. Arif and S. Arjika, A study of sharp coefficient bounds for a new subfamily of starlike functions, J. Inequal. Appl., 194(2021). https://doi.org/10.1186/s13660-021-02729-1. MR4354938, Zbl 1504.30015.
Z. Ye, The logarithmic coefficients of close-to-convex functions, Bull. Institute Math. Academic Sinica, 3(3)(2008), 445-452.
T. Panigrahi
Institute of Mathematics and Applications, Andharua, Bhubaneswar-751029, Odisha, India.
e-mail: trailokyap6@gmail.com
E. Pattnayak
Institute of Mathematics and Applications, Andharua, Bhubaneswar-751029, Odisha, India.
e-mail: pattnayakeureka99@gmail.com
R. M. El-Ashwah (corresponding author)
Department of Mathematics, Faculty of Science, Damietta University,
New Damietta 34517, Egypt.
e-mail: r_elashwah@yahoo.com