Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 19 (2024), 127 -- 142
This work is licensed under a Creative Commons Attribution 4.0 International License.SPECIAL CANAL SURFACES WITH BISHOP FRAME AND QUATERNIONS
Abdussamet Çalışkan
Abstract. The purpose of this paper is to show that canal and tubular surfaces can be obtained by special curves. Also, we reckon the equations of these surfaces with Bishop frame and acquire some corollaries for special curves. Besides, these surfaces are acquired by quaternion and homothetic motion.
2020 Mathematics Subject Classification: 11R52;53A05
Keywords: Canal Surface; Bertrand curve; Involute-Evolute curve; Mannheim Curve; Quaternion; Rotation matrices; Homothetic motion.
References
A. Gray, E. Abbena, S. Salamon, Modern differential geometry of curves and surfaces with Mathematica, CRC Press, Boca Raton, 2006. MR2253203. Zbl 1123.53001.
A. Sabuncuoglu, Differential Geometry (Turkish) , Nobel Publications, Ankara, 2006.
E. Li, D. Pei, Involute-evolute and pedal-contrapedal curve pairs on S2, Math. Methods Appl. Sci. 45(18)(2022), 11986–12000. MR4510357. Zbl 7781338.
H. Liu, F. Wang, Mannheim partner curves in 3-space, J. Geom. 88(1-2)(2008), 120-126. MR2398481. Zbl 1138.53007.
\.I. Gök, Quaternionic approach of canal surfaces constructed by some new ideas, Adv. Appl. Clifford Algebras, 27(2)(2017), 1175--1190. MR3651509. Zbl 1405.53003.
J. Bertrand, Memoire sur la theorie des courbes a double courbure. Comptes Rendus 36 (in French), J. Math. Pures Appl., 15(1850), 332-350.
J. B. Kuipers, Quaternions and rotation sequences, Geom. Integr. Quantization, 1(2000), 127-143. MR1758157. Zbl 0993.53005.
K. Shoemake, Animating Rotation with Quaternion Curves, Siggraph Computer Graphics, 19(1985), 245--254.
K. Orbay, E. Kasap, On Mannheim partner curves in E3, Int. J. Phys. Sci., 4(5)(2009), 261-264.
M. Peternell, H.Pottmann, Computing rational parametrizations of canal surfaces, J. Symbolic Comput., 23(2-3)(1997), 255-266. MR1448698. Zbl 0877.68116.
S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves, J. Geom., 74(2002), 97--109. MR1940593. Zbl 1031.53007.
L. R. Bishop, There is more than one way to frame a curve, The American Mathematical Monthly, 82(3),246-251,1975. MR0370377. Zbl 0298.53001.
S. Aslan, Y. Yayl\i, Split Quaternions and Canal Surfaces in Minkowski 3-Space, Int. J. Geom., 5(2)(2016), 51-61. MR3602130. Zbl 1373.53002.
Z. Xu, R. Feng, J. G. Sun, Analytic and algebraic properties of canal surfaces, J. Comput. Appl. Math., 195(1-2)(2006), 220-228. MR2244638. Zbl 1147.65303.
A. J. Hanson, M. Hui, Quaternion frame approach to streamline visualization, IEEE Transactions on Visualization and Computer Graphics, 1(2)(1995), 164-174.
Abdussamet Çalışkan
Ordu University,
Evkaf Street, Fatsa Vocational School,
Accounting and Tax Applications,
Ordu, Turkey.
e-mail: a.caliskan@odu.edu.tr