Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 19 (2024), 167 -- 178

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

PROJECTIVELY FLAT CUBIC (α, β)-METRIC WITH CONSTANT FLAG CURVATURE K = 0

Brijesh Kumar Tripathi, Dhruvisha Patel and V. K. Chaubey

Abstract. Finsler metrics with straight geodesics on an open subset in Rn are thought to be projective. The flag curvature of any projective Finsler metric is known to be a scalar function of tangent vectors (the flag curvature must be a constant if it is Riemannian). We categorize locally projectively flat cubic (α, β)-metric with constant Ricci curvature and obtain cubic (α, β)-metric of zero flag curvature.

2020 Mathematics Subject Classification: 53B40, 53C60, 53A20, 53B10.
Keywords: Finsler space, Projective change, cubic (α, β)-metric, Projective flatness, Flag curvature.

Full text

References

  1. Brijesh Kumar Tripathi, Sadika Khan, V K Chaubey, On Projectively Flat Finsler Space with a cubic (α, β)- Metric, Filomat, 37:26(2023), 8975–8982. MR4626820.

  2. Brijesh Kumar Tripathi, Sadika Khan, On Weakly Berwald space with a special cubic (α, β)-metric, Surveys in Mathematics and its Applications 18(2023), 1-11. MR4553636. Zbl. 0907.53045.

  3. Brijesh Kumar Tripathi, K.B.Pandey, Characterization of Locally Dually Flat Special Finsler (α, β)-Metrics, International J. Math. Combin 4(2016), 44-52.

  4. G. Yang, On a class of Einstein-reversible Finsler metrics, Differ. Geom. Appl. 60(2018), 80-103. MR3830782. Zbl. 1395.53020.

  5. H.S. Park, H.Y. Park, B.D. Kim, E.s. Choi, Projectively flat Finsler space with certain (α, β)-metric, Bull. Korean Math. Soc. 40(2003), 649-661. MR2018646. Zbl 1052.53031.

  6. M. Matsumoto, Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor, N.S. 34(1980), 305-315. MR059731. Zbl 0448.53016.

  7. M. Hashiguchi, Y. Ichijyo, Randers space with Rectillinear geodesics, Rep. Fac. Sci. Kagoshima Univ., (Math.,Phys.,chem.) 13(1980), 33-40.

  8. P.L. Antonelli, Hand book of Finsler Geometry, kluwer academic publisher, Netherlands, 2003. MR2067663. Zbl 1057.53001.

  9. P. Funk, \ddotUber zweidimensionale Finslersche \ddotRaume, insbesondere \ddotUber solche mit geradlinigen Exremalen und positiver konstanter K \ddotrummung, Math. Zeitschr. 40(1936), 86-93. MR1545544.

  10. X. Chen, X. Mo, Z. Shen, On the flag curvature of Finsler metrics of scalar curvature, J. London Math. Soc. 68(2003), 762–780. MR2010010. Zbl 1063.53078.

  11. Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, (2001), Zbl 0974.53002.

  12. Z. Shen, Projectively flat Randers metric with constant flag curvature, Math. Ann. 325(2003), 19-30. MR 1957262. Zbl 1027.53096.



Brijesh Kumar Tripathi
Department of Mathematics, L.D. College of Engineering Ahmedabad,
Gujarat, 380015, India.
E-mail: *brijeshkumartripathi4@gmail.com


Dhruvisha Patel
Research Scholar, Science_Mathematics Branch,
Gujarat Technological University, Ahmedabad,
Gujarat, 382424, India.
E-mail: dhruvisha14299@gmail.com


V. K. Chaubey
Department of Mathematics, North-Eastern Hill University,
Shillong, 793022, Meghalaya, India.
E-mail: vkcoct@gmail.com



https://www.utgjiu.ro/math/sma