Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 19 (2024), 301 -- 316

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

A NEW PUBLIC KEY CRYPTOGRAPHY USING GENERALIZED FIBONACCI MATRICES

Jyoti Panchal, Harish Chandra and Akanksha Singh

Abstract. This work presents a new public key cryptography encryption-decryption scheme based on generalized Fibonacci matrices and the Hill cipher. This scheme proposes using Fibonacci sequences under prime modulo for key establishment. This scheme exchanges the key matrix X = Mθp of order p × p for encryption and decryption. As an alternative to a key matrix, our scheme only requires the exchange of a pair of numbers (p,θ), resulting in a small key space and reduced time and space complexity. We also implemented our scheme with the help of java script and established better security.

2020 Mathematics Subject Classification: 94A60, 68P25
Keywords: Cryptography, Hill Cipher, Fibonacci Sequence, Generalized Fibonacci Matrices, Key exchange ElGamal

Full text

References

  1. U. Bednarz and M. Wołowiec-Musiał, Generalized Fibonacci–Leonardo numbers, Journal of Difference Equations and Applications, 30(1) (2023), 111–121. rlhttps://doi.org/10.1080/10236198.2023.2265509. Zbl 07815915.

  2. G. Cerda-Morales, On generalized Fibonacci and Lucas numbers by matrix methods, Hacettepe Journal of Mathematics and Statistics, 42(2) (2013), 173-179. MR3099556. Zbl 1370.11026.

  3. T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Transactions on Information Theory, 31(4) (1985), 469-472. MR0798552. Zbl 0571.94014.

  4. H. W. Gould, A history of the Fibonacci Q-matrix and a higher-dimensional problem, Fibonacci Quart, 19(3) (1981), 250-257. MR0627399. Zbl 0467.10009.

  5. R. Grimaldi, Fibonacci and Catalan Numbers: an introduction, John Wiley and Sons, (2012). Zbl 12345678.

  6. I. Gupta, J. Singh, and R. Chaudhary, Cryptanalysis of an extension of the Hill cipher, Cryptologia, 31(3) (2007), 246-253. Zbl 1134.94005.

  7. R. Honsberger, Mathematical gems III, Math. Assoc. of America, (1985). MR0801393. Zbl 0568.00001.

  8. R. C. Johnson, Fibonacci Numbers and Matrices, Durham University, Durham City, DH1 3LE, UK, 2009.

  9. T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume 2, John Wiley and Sons, (2019). Zbl 14124653.

  10. M. Křížek, L. Somer, and A. Šolcová, Fibonacci and Lucas Numbers, In: From Great Discoveries in Number Theory to Applications, Springer, Cham, 2021. rlhttps://doi.org/10.1007/978-3-030-83899-7-7. Zbl 1486.11001.

  11. A. Kumar, H. Chandra, A. K. Barnwal, and D. Singh, A new encryption scheme based on Legendre's transform, Mathematics in Engineering, Science and Aerospace (MESA), 14(4) (2023).

  12. W. Mao, Modern Cryptography: Theory and Practice, Pearson Education India, 2003.

  13. M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis, Apress Berkeley, CA, 2020. rlhttps://doi.org/10.1007/978-1-4842-6367-9.

  14. A. R. Naseri, A. Abbasi, and R. E. Atani, A new public key cryptography using M q matrix, Journal of Mathematical Modeling, 11(4) (2023), 681-693. Zbl 07814830.

  15. K. Prasad and H. Mahato, Cryptography Using Generalized Fibonacci Matrices with Affine-Hill Cipher, Journal of Discrete Mathematical Sciences and Cryptography, 25(8) (2022), 2341-2352. Zbl1506.94060.

  16. A. Singh, H. Chandra, S. Rana, and D. Chhikara, Blockchain based authentication and access control protocol for IoT, Multimedia Tools and Applications, (2023), 1-23. rlhttps://doi.org/10.1007/s11042-023-17607-9.

  17. L. Soni, H. Chandra, and D. S. Gupta, Post-quantum attack resilience blockchain-assisted data authentication protocol for smart healthcare system, Softw: Pract Exper., (2024), 1-21. rldoi: 10.1002/spe.3336.

  18. D. R. Stinson and M. Paterson, Cryptography: Theory and Practice, Chapman and Hall/CRC, 2017. rlhttps://doi.org/10.1201/9781315282497. Zbl 1480.94003.

  19. A. P. Stakhov, Fibonacci matrices, a generalization of the “Cassini formula”, and a new coding theory, Chaos, Solitons and Fractals, 30(1) (2006), 56-66. MR2230891. Zbl 1149.94338.

  20. W. Stallings, Cryptography and network security: Principles and Practice, 7th Ed., Pearson Education Limited, (2017).

  21. P. Sundarayya and G. Vara Prasad, A public key cryptosystem using Affine Hill Cipher under modulation of prime number, Journal of Information and Optimization Sciences, 40(4) (2019), 919-930. MR3957632.

  22. M. K. Viswanath and M. R. Kumar, A Public Key Cryptosystem Using Hill's Cipher, Journal of Discrete Mathematical Sciences and Cryptography, 18(1-2) (2015), 129-138. Zbl 1495.94073.

  23. M. Zeriouh, A. Chillali, and A. Boua, Cryptography based on the matrices, Boletim da Sociedade Paranaense de Matematica, 37(3) (2019), 75-83. MR3845146. Zbl 1424.94076.



Jyoti Panchal
Department of Mathematics and Scientific Computing
Madan Mohan Malaviya University of Technology
Gorakhpur U.P. (273010).



Harish Chandra
Department of Mathematics and Scientific Computing
Madan Mohan Malaviya University of Technology
Gorakhpur U.P. (273010).
e-mail:hcmsc@mmmut.ac.in


Akanksha Singh
Department of Mathematics and Scientific Computing
Madan Mohan Malaviya University of Technology
Gorakhpur U.P. (273010).





http://www.utgjiu.ro/math/sma