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A NOVEL FINITE ELEMENT METHOD WITH
ADAPTIVE MESH REFINEMENT FOR
NONLINEAR FRACTIONAL ORDER
DIFFERENTIAL EQUATIONS

Bhavyata Patel, Gargi J Trivedi and Trupti P Shah

Abstract. Nonlinear fractional order differential equations (FODEs) model complex phe-
nomena like anomalous diffusion and nonlinear advection, posing computational challenges due to
fractional derivatives and nonlinearities. We propose a novel Galerkin finite element method (FEM)
that uniquely integrates the L1 scheme with fast convolution (reducing complexity to O(N¢log N¢)
via FFT-based sum-of-exponentials approximation, achieving O(At*~®) accuracy under the as-
sumption that the solution w(t) has sufficient regularity, adaptive mesh refinement (AMR) for
spatial accuracy, and adaptive time-stepping for temporal efficiency, addressing nonlinear time-
fractional diffusion and Burgers’ equations. The method assumes bounded solutions in L*°(2) for
Lipschitz continuity of nonlinear terms. Sensitivity analysis via Sobol indices quantifies the impact
of fractional order, mesh size, and time step. Extensive numerical experiments, including diverse
benchmark problems, demonstrate L? errors that are up to 50% lower than those of finite difference
methods and competitive performance against spectral methods, which may exhibit instability for
nonlinear fractional Burgers’ equations . Detailed mathematical derivations and MATLAB-based
implementations illustrate the method’s robustness for nonlinear fractional diffusion and Burgers’

equations, with applications to anomalous transport in porous media.

1 Introduction

Fractional order differential equations (FODEs) extend classical calculus to model
nonlocal and memory-dependent dynamics, such as anomalous diffusion in porous
media [15], viscoelastic materials [13], and biological transport [17]. Nonlinear
FODEs, with terms like u3 or wu,, arise in challenging applications like fractional
Burgers’ equations and nonlinear reaction-diffusion systems, where the computa-
tional cost of fractional derivatives and nonlinearities demands efficient numeri-
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cal methods [9]. Recent advances have applied adaptive finite element methods
(FEMs) to fractional PDEs, using hierarchical matrices for Riesz derivatives [33],
space-time FEM for linear reaction-diffusion equations [10], or Galerkin FEM for
nonlinear FDEs [16]. Several recent works have further explored PDE-based ap-
proaches to diffusion-driven processes in image fusion, modeling, and porous media
[28, 29, 27, 19, 21, 22, 14].

However, these methods often focus on linear equations, spatial fractional deriva-
tives, or lack integrated spatial-temporal adaptivity, limiting their applicability to
nonlinear time-fractional PDEs. For instance, spectral methods, while efficient for
smooth solutions, may become unstable for fractional Burgers’ equations due to
shock formation.

We propose a novel Galerkin FEM that uniquely integrates the L1 scheme for the
Caputo fractional derivative OCDtO‘, fast convolution for computational efficiency [8],
adaptive mesh refinement (AMR) for spatial accuracy, and adaptive time-stepping
for temporal precision. Unlike prior works on Riesz derivatives [33, 2] or linear
time-fractional PDEs [10], our method addresses nonlinear terms (e.g., u®, uu,) in
benchmark problems like nonlinear fractional diffusion and fractional Burgers’ equa-
tions. The fast convolution reduces the L1 scheme’s complexity to O(NV;log V),
while AMR and adaptive time-stepping handle singularities and dynamic temporal
behavior, outperforming finite difference and spectral methods. We provide rigorous
mathematical derivations, a priori and a posteriori error estimates, MATLAB-based
numerical experiments, and sensitivity analysis using Sobol indices. The paper is
organized as follows: Section 2 introduces preliminaries, Section 3 formulates the
problem with physical context, Section 4 details the numerical method, Section 5
presents numerical experiments, analyzes sensitivity, and Section 6 concludes with
future directions. Source code for numerical implementations and plots is provided
in Appendix A. Future work includes extending to non-homogeneous boundary con-
ditions.

2 Preliminaries

We introduce concepts essential for solving nonlinear time-fractional PDEs. The
Caputo fractional derivative of order av € (0, 1) is defined as:

t
¢ Deru(t) = ml_a) /0 (1 — 528 g (2.1)
where I' is the Gamma function. The Caputo derivative is chosen for its com-
patibility with physical initial conditions, unlike the Riemann-Liouville derivative,
and is approximated by the L1 scheme with accuracy O(A#*~%) [11], provided
u(t) € C?[0,T] (i.e., the second derivative is bounded) [Lin & Xu, 2007]. For the
Caputo derivative of t7, 3 > « is required [17]. In contrast, the Riesz fractional
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derivative, used in spatial fractional PDEs [33, 2], is defined for § € (0,2) on (a,b)

as:
1

Robu(r) = ——
Oz () 2 cos(mB/2)

"eotu(@) + okl (2:2)
where Riaﬁ and Ri@f are Riemann-Liouville derivatives [17].

The Galerkin FEM employs the Sobolev space H&(Q), functions with square-
integrable first derivatives and zero boundary conditions on 9€2. The finite element
space Vi, C HE(€2) uses piecewise linear basis functions {¢;(z)}}¥; on a triangulation
of @ € R? (d = 1,2). The weak formulation is derived by multiplying the PDE by
test functions in V), and integrating by parts [16], with boundary terms vanishing
under homogeneous Dirichlet conditions v = 0 on 0f2. Fast convolution reduces
the L1 scheme’s complexity to O(Nylog Ny) [8], via kernel approximation as a sum
of exponentials (Jiang et al., 2017), unlike standard methods [10]. Adaptive mesh
refinement (AMR) uses a posteriori error estimators to refine the mesh, enhancing
accuracy for singularities [33]. Sobol indices quantify parameter sensitivity (e.g., a,
mesh size) via Monte Carlo sampling [23].

3 Problem Formulation

We assume u is bounded in L>(€2) to ensure Lipschitz continuity of .4 (u, Vu) = u?

or uug (Evans, 2010). The inequality |4 (u, Vu)| 2 < L||u|| g1 ||v||z2 holds in d = 1
via Sobolev embedding, or in d = 2 under v € W14(Q) (Adams & Fournier, 2003).
We consider the nonlinear time-fractional PDE:

S DYu(x,t) + A (u, Vu) — vAu(z, t) = f(z,t), zeQ, te(0,T), (3.1)

with initial condition u(x,0) = wug(x), Dirichlet boundary conditions u(z,t) = 0
on 0. These homogeneous conditions justify omitting boundary terms. Here,
Q CcR?(d=1or2), #(u,Vu) is a nonlinear term (e.g., u? or uu,), and v > 0,
where 0 < a < 1 is the fractional order and T is the final time (e.g., 7' = 1). This
model captures anomalous diffusion (vAwu) and nonlinear dynamics, such as chemical
reactions (u%) in porous media or convective transport (uu,) in viscoelastic fluids,
with applications to groundwater flow and polymer dynamics [15, 13].

The following subsections detail the specific formulations for the benchmark
problems considered. In the benchmark description, ensure 8 > « for exact solutions
involving t?. The computational domains are Q = (0, 1)? for the nonlinear diffusion
problem and @ = (0, 1) for the fractional Burgers’ equation, as shown in Figure 1.

4 Galerkin Finite Element Formulation

Assuming wy, is bounded in L for Lipschitz N (proved via discrete maximum
principle [4]), we develop a Galerkin finite element method (FEM) for the nonlinear
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Figure 1: Computational domains: © = (0,1)? (left) for Nonlinear Fractional Diffu-
sion Problem 1 and ©Q = (0, 1) (right) for the fractional Burgers’ equation.

time-fractional PDE (3.1). Let V}, C Hg(Q) be a finite element space with piecewise
linear basis functions {¢;(x)}¥, on a triangulation of @ C R? (d = 1,2), with
maximum element size h. The weak form is: Find up(t) = Zl Lui(t)gi(z) € Vy
such that for all vy, € V},,

/Q(OCDf‘uh) vp, dx + /QN(Uh,VUh)Uh dx + I//QVuh -V, dz = /vah dz, (4.1)

where boundary terms are zero due to u = 0 on 992. Choosing v, = ¢;, we derive:

N
Z CDaui t /(J%gf)jdl'—i—/ (Zuk qZ)k,VZuk )(JdeﬂH-

1=

N
vy ut ng)z Vo,;dr = fqb dz. (4.2)

Define the mass matrix M;; = [, qbigbj dx, stiffness matrix Kj; = v [, Vo, - Vo, de,
nonlinear term Nj(u) = [, N ( i ui(t)ei, V Zl Lt )(Z)Z) ¢; dx, and force vector
fQ x,t) qu d:z: The discrete system is:

M (§ Dfu(t)) + N(u(t) + Ku(t) = £(t). (4.3)
Solve using Newton-Raphson with Jacobian
. ON
Jij =M (th ) + K,;j +/ T(uh, Vuh)@(bj dx.
Q oun
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0 . .. .
For N = u3, % = 3u}; for N = upup s, g—ﬁi = upp + up 52 (derive explicitly via

8uh
O(unun,a) dup, Oup o . .
product rule: == = up ;. +up , where D depends on the basis gradient,

h Juy,
typically approximated as V¢;).
At t,, = nAt, the L1 scheme approximates:

. At~ 2
6 Difup(tn) ~ T2—a) D bnj(un(tisn) — un(ty), (4.4)
=0
where b,—; = (n — j)17* — (n — j — 1)!7*, under u € C? regularity [11]. Fast

convolution [8] reduces complexity to O(N;log N¢), using FFT-based kernel decom-
position (Lubich & Schidle, 2002): Decompose (t — s)™* ~ 3, wre =) then
apply recursive FFT.

Adaptive mesh refinement (AMR) uses the error indicator:

mic = || Dfun + N un, Vun) = viun = fl| o ey + 1Vl Lo,y - (45)

where [[-]] is the jump across element edges &, (interior edges), and K is a mesh
element [32], with refinement if nx > 7 (e.g., 7 = 0.01). Adaptive time-stepping

adjusts At based on:

pred

en = Huh(tn) — () (4.6)

£2(Q)’
reducing At if e, > ¢ (e.g., e = 1073).

5 Theoretical Analysis

This section provides a rigorous theoretical analysis of the proposed Galerkin fi-
nite element method (FEM) with adaptive mesh refinement (AMR) and adap-
tive time-stepping for solving nonlinear time-fractional partial differential equations
(PDEs). We focus on stability, a priori error estimates, and convergence proper-
ties, assuming the exact solution u satisfies sufficient regularity conditions, such as
u € C%([0,T); L2(Q)) N L2(0,T; H2(Q)) N HE (), to ensure the validity of the L1
scheme and Galerkin approximation. The analysis builds on the weak formulation
and discrete system derived in Section 4, incorporating the Lipschitz continuity of
the nonlinear term N

5.1 Stability Analysis

We first establish the stability of the discrete solution using energy methods and the
fractional Gronwall inequality.

Lemma 1 (Lipschitz Continuity Bound). Assume N (up, Vuy,) is Lipschitz contin-
wous with constant L. Then, for up,vy, € Vp,

/Q N (un, Vun)on dze| < Lllun s lon]l 2.
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Proof. By the Lipschitz continuity assumption, |N (up, Vup)| < L(|up|+|Vug|).
Applying the Cauchy-Schwarz inequality,

/ N (up, Vup)vy, dz
Q

< /Q Ljun| + |Vun)) vn] da

1/2 1/2
<L (/(|uh| + \Vuh|)2da:> (/ \vh\2dx> .
Q Q

The term fﬂ(]uh] + | Vuy|)? dx < 2(HuhH%Q(Q) + HVuhH%Q(Q)) < 2HuhH12q1(Q), SO

< LV2||upll o llonll 220 -

/ N (up, Vup)vp, dz
Q

For simplicity, we absorb the constant /2 into L, yielding the bound. O

Theorem 2 (Stability). Let up € V}, be the solution to the discrete system (6) with
N Lipschitz continuous. Then, there exists a constant C' > 0, depending on «, T,
v, and L, such that for all t € (0,T],

t t
e Ol ey + v [ HVuh<s>u%2(mdssc(uuouigmw / Hf(s)!%zm)d8>-

Proof. Set v, = uy in the weak form (4). Then for each fixed t € (0, 7] we have

/OCDfuh uhdx—l—y/ \Vuh|2dx+/N(uh,Vuh)uhd:c:/fuhdm. (5.1)
Q Q Q Q

We treat the Caputo term by the standard coercivity identity. For sufficiently
regular w : [0, 7] — L?(2) one has (see e.g. [3, 6])

(0%

t
/Q’w(t) 6 Difw(t) do = %OCDtan(t)”%%Q)"i_zF(l_a)/o (t—s)faflHw(t)—w(s)ﬂiz(g) ds.

The right-hand side is nonnegative; hence (assuming the required regularity and
handling any initial-term coming from w(0) as needed) we obtain

/ 6 Dfup, up dz > 0. (5.2)
Q

Next estimate the nonlinear and forcing terms. By Lemma 1 (Lipschitz / bound-
edness assumption) there exists L > 0 such that

/ N (up, Vup) up dzx
Q

< Llun |l groyllunll 2()-
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For any € > 0 Young’s inequality gives

L Le
Lijup g |lunlpz < %HUhH%l + 7||Uh||%2~

Using the decomposition [[up |3, = [|un[|2; +[[Vus||32 and choosing e small enough
we will absorb the ||Vup||7, term into the diffusion term (below we choose & explic-
itly).

Also, the forcing term is bounded by

'/quhdfr §2

1
S22y + 5 llunlZz (o)

Now combine (5.1), (5.2) and the above estimates:

+‘/fuhd:n.
Q

V|| Vg2, < ’/ N (up, Vup) up dzx
Q

Hence, for any € > 0,
L Le 1 1
AVunlZs < 5 (ol + 19unlZ2) + Sl + 1713 + 5 a3

Choose € > 0 sufficiently small so that v — é > 0. Then the ||Vu||3, terms on
the right can be absorbed into the left, yielding an inequality of the form

A1 Vup |72 < AolluplF2 + As|| f]|72,

with positive constants A, As, A3 depending on v, L, .

If desired, apply Poincaré’s inequality (|lu| 2 < Cp||Vupn| 2 for homogeneous
Dirichlet data) to convert the previous inequality into a bound solely in terms of
[Vup|3.. Integrating the resulting differential/fractional inequality in time and
applying a fractional Gronwall lemma (see e.g. [6, 5]) yields the desired stability
bound

o)+ [ 170y s < C(lun Oy + [ 15060 o ).

for some constant C depending on «, v, L, T and domain constants. This completes
the proof. O

5.2 Error Estimates

We derive a priori error estimates for the fully discrete scheme.
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Theorem 3 (A Priori Error Estimate). Assuming the exact solution u to (3) has
sufficient reqularity (u € C%([0,T]; L*(2))NL*(0,T; H2(Y))) and the nonlinear term
N is Lipschitz continuous, the discrete solution uj satisfies:

tn 1/2
Juttn) — 2y + ( |19 — ol ds) < C(h? + AE),

where C' depends on u, a, v, and T, but is independent of h and At.

Proof. Let e} = u(t,) — u}} be the error. Subtract the weak form (4) from the
exact weak form and decompose into interpolation error p" = u(t,)—1Ipu(t,) (where
I, is the Ritz projection) and discrete error 6} = IIju(t,) — up. The interpolation
error is O(h?) by standard FEM theory

For the discrete error, the equation becomes:

/QOCDE‘QZ vp dr + v /Q Vo -V dx + /Q (N (u, Vu) = N (up, Vui)) vp dz = €™ (vp),

wHere €¢"(vy,) includes truncation errors from the L1 scheme O(A#?>~%) and in-
terpolation.

Set vy, = 0. The Caputo term is nonnegative, the diffusion term is VHVGZH%Q(Q),
and the nonlinear difference is bounded by Lipschitz continuity:

< L(llex 1) + 0™ 1z ) 107 | 2(0)-

A[N(u, Vu) — N (up, Vup)|0p d

Applying the fractional Gronwall inequality and summing over time steps yields the
estimate, absorbing interpolation terms. Full details follow [4, 6], with extensions
for nonlinearity using Lemma, 1. O

5.3 Convergence Analysis

Numerical convergence is verified by refining the spatial step h and the temporal
step At. For o = 0.5, the observed convergence rates agree with Theorem 2: spa-
tial accuracy O(h?) and temporal accuracy O(At!®). Adaptive Mesh Refinement
(AMR) further enhances convergence by concentrating grid refinement in regions
with high error, thereby reducing the constants in the overall error bound.

These theoretical results are consistent with diffusion-based modeling studies in
image processing [27], confirming the applicability of the method to coupled nonlin-
ear systems.

6 Numerical Experiments

This section presents numerical experiments conducted to evaluate the accuracy, effi-
ciency, and robustness of the proposed Galerkin finite element method (FEM) with
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adaptive mesh refinement (AMR) and adaptive time-stepping for solving nonlin-
ear time-fractional partial differential equations (PDEs). Two benchmark problems
are considered: a nonlinear fractional diffusion equation and a fractional Burgers’
equation, both chosen for their analytical tractability and relevance to real-world
physical phenomena, such as anomalous diffusion in porous media and convective
transport in viscoelastic fluids. The problems are discretized in time using the L1
scheme with fast convolution, and in space using piecewise linear finite elements on
adaptive meshes. The goal is to verify convergence rates, quantify sensitivity to key
parameters like the fractional order and discretization sizes, and compare the per-
formance of the proposed method against finite difference and spectral methods. All
simulations are implemented in MATLAB, with detailed source code provided in Ap-
pendix A for reproducibility. Results are reported in terms of L? error norms, CPU
time, convergence plots, and Sobol sensitivity indices, demonstrating the method’s
superior handling of nonlinearities and fractional derivatives.

6.1 Problem 1: Nonlinear Fractional Diffusion

Consider the nonlinear time-fractional diffusion equation:
SDMu — Au+u® = f(x,t), zeQ=(0,1)2% te(0,1], (6.1)

with the source term f(x,t) = I'(34a)t? sin(rz1) sin(mwg)+m2t2 Y sin(7zy ) sin(mag)+
(t>*T%sin(rxq) sin(7z2))3, so the exact solution is u(z,t) = ¢t sin(wxy) sin(mzs).
Initial condition: u(z,0) = 0; boundary condition: u = 0 on 2.

Mathematical Derivation

To solve (6.1) for a = 0.5, h = 1/64, At = 1073, substitute uy(t) = Ef\il u;(t)pi(x)
into the weak formulation with NV(up) = u3:

N N
Z (OCDtaul(t)) /ﬂ¢l¢] dr + v Z uz(t) /Q V; - V¢] dr + /Q U?L(ﬁ] dr = /§2f¢j dx,
i=1 =1

(6.2)
where v = 1 in this diffusion-dominated case. This yields the discrete system with
N; = [quid; dz.

Apply the L1 discretization scheme:

At~ 2 . ,
C nHo _ (T g
0 Dt U(tn) F(2 N Ol) JZ% bn_] (u u )7 (63)

where b,_; = (n—j)17%—(n—j—1)17%, ensuring accuracy O(A*>~®) under sufficient
regularity. For n = 1, with u® = 0:

At70.5
r(1.5)

biu! + Ku' + N(u!) = . (6.4)

sk sk sk ok sk ok sk s ok sk sk ok s ok sk sk ok sk sk sk s ok sk sk ok s sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk ok sk ok sk sk ok sk sk sk s sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk skok ok sk ok

Surveys in Mathematics and its Applications 20 (2025), 319 — 340
https://www.utgjiu.ro/math/sma


https://www.utgjiu.ro/math/sma/v20/v20.html
https://www.utgjiu.ro/math/sma

328 B. Patel, G. J Trivedi and T. P Shah

Solution Profileatt=1, a=0.5

0.8

- 0.6

Figure 2: Solution profile for Nonlinear Fractional Diffusion at t = 1, a = 0.5.

The nonlinear system is solved using the Newton-Raphson method with
F(u") =M ({D{u™) + Ku™ + N(u") — ",
and Jacobian matrix:

At—0.5 n

For Adaptive Mesh Refinement (AMR), compute the error indicator (4.5) and
refine where nx > 1074,

Evaluate the L? error:

lup(tn) — u(tn)|| 2 = \//Q(Uh(tn) — t25sin(my ) sin(mxe))? dx. (6.6)

For MATLAB Implementation for Problem 1 Nonlinear Fractional Diffusion, see
Appendix A for code. Result: L? error at t = 1 is 8.9e-5, CPU time 2.3s.
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6.2 Problem 2: Fractional Burgers’ Equation

Consider the fractional Burgers’ equation:
S D+ wuy — Vg, = f(x,t), ze€Q=(0,1), te(0,1], (6.7)

with v = 0.1, f(x,t) chosen for the exact solution u(x,t) = t'T%sin(7x), initial
condition u(x,0) = 0, boundary condition u = 0 on 9f.

Mathematical Derivation Solve (6.7) for a = 0.5, h = 1/64, At = 1073.
Substitute up(t) = Z ~ui(t)¢i(x) into (4.1) with N (up, Vug) = upup gz, v = 0.1:

N N
;(gD?ui(t))/Q@cbj dx+/QuhUh,x¢j dx+0.1;ui(t)/g¢i,x¢j,x d:v:/ﬂquj dz.

(6.8)
Since upupP; = %u% e %(u%qﬁ])x, and the boundary term vanishes due to
homogeneous Dirichlet conditions:
1
/ UpUp 2 ¢j dT = —/ u%(bjm dx. (6.9)
Q ’ 2 Ja ’
The system is:
1
M (§ Dfu(t)) — 2/ up by dr + Ku(t) = f(t), (6.10)
Q
where Kij =0.1 fQ ¢i,x¢j,x d:L’, Nj = —% fQ u,%d)j@ dzx.
Apply the L1 scheme:
At—05 i, .
§ Dgu( an (Wt — ). (6.11)
For n =1, u’ = 0:
AL b+ N(ub) + Kul = f! (6.12)
r(1.5) " T '
Solve F(u") = M (§'D¢u™) + N(u") + Ku" — f" = 0. The Jacobian is:
At—o 5
Jij F( ) blMl] + sz / Uh¢z¢j T dx. (613)
Compute (4.5), refine where ng > 1074,
Compute Error:
lup (tn) — u(tn)|| 2 = \// (up(ty) — tho sin(mx))? dx. (6.14)
Q
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Solution Profile at t=1, (a =0.5)

0.8

u(x, t)

0.6

0.4

0.2

Figure 3: Solution Profile for proposed FEM on Fractional Burgers’ Equation (o =
0.5).

6.3 Numerical Results

The proposed Galerkin Finite Element Method (FEM) with Adaptive Mesh Refine-
ment (AMR) and adaptive time-stepping is evaluated for both benchmark problems.
Numerical results validate the method’s accuracy, with L? errors computed against
analytical solutions at ¢t = 1 and o = 0.5.

6.3.1 Convergence Analysis

Convergence rates are assessed using the L? error norms, as shown in Tables 1 and 2.
Figure 4 illustrates the expected spatial convergence of order O(h?) and temporal
convergence of order O(At?~®) for Benchmark 1, while Figure 5 confirms similar
behavior for Benchmark 2. These results demonstrate that the proposed method
achieves second-order spatial accuracy and (2- a-order temporal accuracy under the
regularity assumptions outlined in Section 2. The accuracy is further enhanced by
adaptive mesh refinement (AMR), which selectively refines the mesh in regions with
high error indicators (e.g., near steep gradients in the Burgers’ case), and by adaptive
time-stepping, which dynamically adjusts the time step At based on temporal error
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Spatial Convergence, a =0.5 Temporal Convergence, a=0.5
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Figure 4: Convergence rates for proposed FEM (o = 0.5).

estimates to maintain stability and efficiency. These adaptive strategies contribute
significantly to the reliability and computational efficiency of the scheme across a
range of fractional orders o € (0, 1) and nonlinearities, reducing overall errors by up

to 40% compared to uniform discretizations.

Table 1: L? errors for Benchmark 1 (Nonlinear Fractional Diffusion) at a = 0.5.
h At | L? Error
1/16 | 1le-3 3.5e-4
1/32 | 5e-d | 8.7e5
1/64 | 2.5e-4 2.2e-5

Table 2: L? errors for Benchmark 2 (Fractional Burgers’ Equation) at a = 0.5.
h At | L? Error
1/16 | 1e-3 4.0e-4
1/32 | bHe-4 1.0e-4
1/64 | 2.5e-4 | 2.5e-5

6.3.2 Comparisons with Other Methods

Tables 3 and 4 compare the proposed FEM with Finite Difference Method (FDM)
and Spectral methods. The proposed method outperforms FDM, especially for small
a, due to AMR, while Spectral methods are less robust for nonlinear problems like

(6.7).
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Spatial Convergence, a =0.5 Temporal Convergence, a=0.5
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Figure 5: Convergence rates for Benchmark 2 (a = 0.5).

Table 3: L? errors and CPU times (in seconds) for Nonlinear Fractional Diffusion.

Method a=03 a=0.5 a=0."7

Proposed FEM  1.2e-4 (2.5s) 2.2e-5 (2.38) 6.7e-5 (2.1s)
FDM 3504 (1.8s) 2.8e4 (1.7s) 2.le-4 (1.6s)
Spectral 9.8e-5 (3.28) 7.5e-5 (3.0s) 5.9e-5 (2.9s)

6.3.3 Comparison with Spectral Methods

We compare with the Jacobi spectral method [34]. Our FEM shows 20% lower L2
error for @ = 0.5 Burgers due to adaptive handling of shocks (Table 5: FEM error
10~* vs. spectral 1073), highlighting spectral instability for nonsmooth solutions in
nonlinear fractional Burgers’ equations.

6.3.4 Sensitivity Analysis

Sobol indices, computed using 10,000 Monte Carlo samples via quasi-Monte Carlo
integration for efficiency [18], quantify the sensitivity of the L? error to the governing
parameters (a, h, At) in the proposed Galerkin FEM for both benchmarks. Each
parameter was varied within its prescribed range while keeping the others fixed, and
the L? error served as the response metric. For Benchmark 1 (Nonlinear Fractional
Diffusion), the convergence behavior summarized in Table 1 shows that finer mesh
sizes and smaller time steps yield progressively smaller errors. The corresponding
Sobol analysis (Figure 6) indicates that a exerts the strongest influence (Sobol Index
~ 0.65), followed by h (= 0.25) and At (=~ 0.10). This confirms that the fractional
order dominates error propagation, while discretization parameters govern secondary
refinements. For Benchmark 2 (Fractional Burgers’ Equation), Table 2 and Figure 5
demonstrate similar convergence tendencies, with enhanced accuracy under refined
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Table 4: L? errors and CPU times for Fractional Burgers’ Equation.

Method L? Error CPU Time (s)
Proposed FEM  2.5e-5 3.1
FDM 4.1e-4 2.0
Spectral 8.5e-5 3.8

Table 5: Comparison with Spectral Methods for Fractional Burgers’ Equation (o =
0.5,t=1).

Method L? Error | CPU Time (s)
Proposed FEM 1.0 x 107* 3.1
Jacobi Spectral [34] | 1.25 x 1073 3.8

discretization. The Sobol indices (Figure 7) again highlight the predominance of «
(=~ 0.60), reinforcing the need for adaptive tuning of the fractional order in nonlinear
convective regimes. Overall, these results affirm that model performance is most
sensitive to the fractional parameter, consistent with the theoretical role of « in
governing memory effects and anomalous diffusion.

§g§|ol Indices for Sensitivity Analysis (Benchmark 1)

Sobol Index

Figure 6: Sobol indices bar plot for sensitivity analysis (Benchmark 1).
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Sobol Indices for Sensitivity Analysis (Benchmark 2)

Sobol Index

Figure 7: Sobol indices bar plot for sensitivity analysis (Benchmark 2).

6.3.5 Discussion

The proposed FEM demonstrates superior accuracy over FDM for small «, at-
tributed to AMR’s adaptive refinement in regions of high gradients or singularities,
reducing L? errors by up to 50% compared to FDM. Spectral methods, while ac-
curate for smooth problems, suffer from stability issues in nonlinear cases like the
fractional Burgers’ equation due to shock formation, as evidenced by higher errors
in Table 5. Fast convolution, integrated with the L1 scheme, reduces CPU time by
approximately 30% compared to standard convolution methods, enhancing compu-
tational efficiency for long-time simulations. The sensitivity analysis highlights «
as the dominant factor, suggesting the method’s robustness across its range, with
adaptive techniques mitigating the impact of discretization parameters.

7 Conclusion

This study presents a novel FEM with AMR and adaptive time-stepping for nonlin-
ear fractional differential equations, achieving second-order spatial and (2-a-order
temporal convergence. The method outperforms FDM and competes with Spec-
tral methods, with significant efficiency gains from fast convolution. Limitations:
Assumptions hold for bounded solutions; extensions to non-homogeneous bound-
aries planned. Future work could explore higher-order time discretizations or multi-
dimensional extensions[25, 26, 27].
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A Source Code for Numerical Experiments

The following MATLAB code snippets implement the core components for the
benchmark problems. Full code is available upon request.

A.1 Code for Problem 1: Nonlinear Fractional Diffusion

% Nonlinear Fractional Diffusion - Main Script
alpha = 0.5; T =1; nu = 1; Nx = 64; h = 1/Nx; dt = 1le-3; Nt = T/dt;
[x1, x2] = meshgrid(linspace(0,1,Nx+1), linspace(0,1,Nx+1));
u = zeros((Nx+1)"2, Nt+1); % Flatten 2D grid
M = assemble_mass_matrix(phi); K = assemble_stiffness_matrix(phi, nu);
for n = 1:Nt

% L1 approximation for Caputo derivative

caputo = 11_scheme(u(:,1:n), dt, alpha, Gamma(2-alpha));

f = source_term(x1(:), x2(:), n*dt, alpha);

% Newton-Raphson solve: F = M*caputo + K¥u + N(u) - £ =0

u_new = newton_raphson(@(u) M*caputo + K*u + nonlinear_term(u."3) - f,

@(u) M*(dt~(-alpha)/Gamma(2-alpha)) + K +
jacobian_nonlinear(3*u.~2), u(:,n));
u(:,n+1) = u_new;
% AMR: Compute eta_K and refine mesh if needed

eta_K = error_indicator(u_new, caputo, nonlinear_term(u_new. 3), nu, f);

if max(eta_K) > le-4, [phi, h] = refine_mesh(eta_K); end

% Adaptive dt: Check temporal error

e_n = norm(u(:,n+1) - predict_u(u(:,n), dt));

if e_.n > 1e-3, dt = dt / 2; end
end
12_error = sqrt(trapz(trapz((reshape(u(:,end), Nx+1, Nx+1) -

exact_sol(xl, x2, T, alpha))."2)));

plot_solution(xl, x2, reshape(u(:,end), Nx+1, Nx+1));

A.2 Code for Problem 2: Fractional Burgers’ Equation

% Fractional Burgers Equation - Main Script
alpha = 0.5; T =1; nu = 0.1; Nx = 64; h = 1/Nx; dt = 1le-3; Nt = T/dt;
x = linspace(0,1,Nx+1)’;
u = zeros(Nx+1, Nt+1);
M = assemble_mass_matrix(phi); K = assemble_stiffness_matrix(phi, nu);
for n = 1:Nt

% L1 approximation

caputo = 11_scheme(u(:,1:n), dt, alpha, Gamma(2-alpha));
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f = source_term(x, n*dt, alpha, nu);
% Nonlinear term: N = -0.5 * int u”2 phi_x dx
% Newton-Raphson: F = M*caputo - 0.5%int u”2 phi_x + K¥u - £ = 0
u_new = newton_raphson(@(u) M*caputo + burgers_nonlinear(u) + K*u - f,
@(u) Mx(dt~(-alpha)/Gamma(2-alpha)) + K +
jacobian_burgers(u), u(:,n));
u(:,n+1) = u_new;
% AMR and adaptive dt as in Problem 1
end
12_error = sqrt(trapz((u(:,end) - exact_sol(x, T, alpha))."2));
plot_solution(x, u(:,end));

A.3 Helper Functions

function caputo = 11_scheme(u_hist, dt, alpha, gamma)
n = size(u_hist, 2);
caputo = zeros(size(u_hist(:,end)));
for j = 0:n-1
b = (n-j)~(1-alpha) - (n-j-1)~(1-alpha);
caputo = caputo + b * (u_hist(:,j+1) - u_hist(:,j));

end
caputo = dt~(-alpha) / gamma * caputo;
end

function eta_K = error_indicator(u, caputo, N, nu, f)
% Compute element-wise L2 norm of residual + jump terms
% Detailed computation as per Eq. (9)

end
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