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ON THE USE OF THE SCHWARZIAN DERIVATIVE
IN REAL ONE-DIMENSIONAL DYNAMICS

Felipe Correa and Bernardo San Mart́ın

Abstract. In the study of properties within one-dimensional dynamics, the negative Schwarzian

derivative condition has been shown to be very useful. However, this condition may seem somewhat

arbitrary, as it is not inherently a dynamical condition, except for the fact that it is preserved un-

der iteration. In this brief work, we show that the negative Schwarzian derivative condition is not

arbitrary in any sense but is instead strictly related to the fulfillment of the Minimum Principle for

the derivative of the map and its iterates, which plays a key role in the proof of Singer’s Theorem.

1 Introduction

The Schwarzian derivative appears in a wide range of mathematical topics, often
in areas that seem unrelated at first glance [3]. It was first formulated in 1869 by
Hermann A. Schwarz in his work on conformal mappings. David Singer was the first
to apply it to one-dimensional dynamics in 1978, using it to study C3 maps from
the unit interval to itself. An initial approach was made by D.J. Allwright in [1]
who studied bifurcations of C3 maps satisfying a certain property, denoted by P ,
which resembles the Schwarzian derivative. In later progress, it was found that maps
with negative Schwarzian derivative also possess local properties that are useful for
establishing certain distortion bounds, particularly when focusing on cross-ratios [2].

At first glance, the negative Schwarzian derivative condition may appear some-
what arbitrary because it does not seem to be a dynamical condition. In this work,
we show that this condition is not arbitrary in any sense, but rather strictly related
to a sufficient condition that guarantees the fulfillment of the Minimum Principle
for the derivative of the map and its iterates, which is the key point in the proof
of Singer’s Theorem. To the best of our knowledge, this is a simple and illustrative
explanation of the use of the Schwarzian derivative in the context of one-dimensional
differential dynamics.
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2 The Schwarzian derivative

A widely held view among mathematicians who have worked with the Schwarzian
derivative is the sense of mystery surrounding its origin and the remarkable way in
which it facilitates the solution of various problems in one-dimensional dynamics,
driven solely by the requirement of preserving the negative condition under iterations
of the map. However, its precise connection with the dynamical properties of the
map remains unclear. Let us briefly recall it. Consider an interval I = (a, b) ⊆ R
and a C3 map f : I → I. If f ′(x) ̸= 0, the Schwarzian derivative of f at x is defined
as

Sf(x) :=
f ′′′(x)

f ′(x)
− 3

2

(︃
f ′′(x)

f ′(x)

)︃2

.

We say that f satisfies the negative Schwarzian derivative condition on I if Sf(x) < 0
for all x ∈ I.

One of the main reasons the Schwarzian derivative is of interest in one-dimensional
dynamics, as first observed by D. Singer, is its remarkable composition law, which
follows directly from the chain rule

S(h ◦ g)(x) = Sh(g(x)) · (g′(x))2 + Sg(x). (2.1)

Consequently, if a map satisfies the negative Schwarzian derivative condition, then
all its iterates do as well. As we shall see, this property makes it a valuable tool in
one-dimensional dynamics.

3 The Minimum Principle

In this section, we introduce The Minimum Principle, a remarkable property of a
map that carries significant dynamical implications, which will be explored in the
next section.

Definition 1 (The Minimum Principle in an interval). A map g defined in an
interval J = [a, b] satisfies the Minimum Principle on J if for all x ∈ (a, b)

|g(x)| > min{|g(a)|, |g(b)|}.

Definition 2 (The Minimum Principle). A map g defined on an interval I satisfies
The Minimum Principle if it satisfies the Minimum Principle in all intervals J ⊂ I
where the map g does not vanish.

By definition, a map g satisfies the Minimum Principle if and only if every local
maximum is positive and every local minimum is negative.

In particular, for a differentiable map f defined on an interval I, its derivative
f ′ satisfies the Minimum Principle if for any non-vanishing critical point x ∈ I of

f ′, the quotient
f ′′′(x)

f ′(x)
is negative.
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4 Singer’s Theorem

An important result in one-dimensional differential dynamics was established by D.
Singer in [4]. This result shows that the negative Schwarzian derivative condition
restricts both the type and number of periodic orbits that a map can possess.

Before stating the theorem, we recall some necessary definitions. We say that
p is a periodic point for a map f if, for some integer n, fn(p) = p. Denote O(p) =
{fn(p); n ∈ Z} the orbit of p under f . The ω−limit set is the set of accumulation
points of the sequence of forward iterates of a point in this orbit. The basin of a
periodic point p is the set of points whose ω−limit set contains p. A periodic point
p is attracting if its basin contains an interval that contains p. The immediate basin
of a periodic point p is the union of the connected components of its basin which
contain a point from O(p). Finally, we say that c is a critical point of f if f ′(c) = 0.
A critical point is called non-degenerate if f ′′(c) ̸= 0.

Theorem 3 (Singer’s Theorem [4]). If f : I → I is a C3 map with negative
Schwarzian derivative, then the immediate basin of any attracting periodic point
contains either a critical point of f or a boundary point of I; each neutral periodic
point is attracting; and there exists no interval of periodic points.

The key point in the proof of Singer’s Theorem follows from the following propo-
sition [4].

Proposition 4. If Sf(x) < 0 for all x ∈ I, then the function f ′ cannot have either
a positive local minimum value or a negative local maximum value.

In particular, the negative Schwarzian derivative condition for f , combined with
the composition law in (2.1), implies that for all positive integers n, the derivative
(fn)′ satisfies the Minimum Principle.

5 The Schwarzian derivative and The Minimum Princi-
ple

Our goal is to find a condition on f such that the derivative (fn)′ satisfies the Min-
imum Principle for all positive integers n. Unfortunately, deriving such a condition
does not seem to be a straightforward task. Instead, we propose an alternative
approach: finding a condition on f such that, for a given positive integer n and a
non-vanishing critical point x ∈ I of (fn+1)′, the quotient

(fn+1)′′′(x)

(fn+1)′(x)

be negative. Indeed, as noted at the end of Section 3 this will guarantee the fulfill-
ment of the Minimum Principle for (fn+1)′.
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To achieve this, let f be a differentiable map defined on an open interval I, and
let x ∈ I be a non-vanishing critical point of (fn+1)′; that is, a point x ∈ I such
that (fn+1)′(x) ̸= 0 and (fn+1)′′(x) = 0.

By the chain rule, we have the following

(fn+1)′(x) = (fn)′(f(x)) · f ′(x); (5.1)

(fn+1)′′(x) = (fn)′′(f(x)) · (f ′(x))2 + (fn)′(f(x)) · f ′′(x); (5.2)

and

(fn+1)′′′(x) = (fn)′′′(f(x)) · (f ′(x))3 + 3 (fn)′′(f(x)) · f ′(x) · f ′′(x)

+ (fn)′(f(x)) · f ′′′(x). (5.3)

Thus, from (5.1) and (5.3), we obtain

(fn+1)′′′(x)

(fn+1)′(x)
=

(fn)′′′(f(x))

(fn)′(f(x))
· (f ′(x))2 + 3

(fn)′′(f(x)) · f ′′(x)

(fn)′(f(x))
+

f ′′′(x)

f ′(x)
. (5.4)

Since we have assumed that (fn+1)′′(x) = 0, it follows from (5.2) that

(fn)′′(f(x)) · (f ′(x))2 = −(fn)′(f(x)) · f ′′(x). (5.5)

First, multiply (5.5) by f ′′(x) and rearrange terms, we obtain

(fn)′′(f(x)) · f ′′(x)

(fn)′(f(x))
= −

(︃
f ′′(x)

f ′(x)

)︃2

.

Substituting this into the second term on the right-hand side of (5.4) gives

(fn+1)′′′(x)

(fn+1)′(x)
=

(fn)′′′(f(x))

(fn)′(f(x))
· (f ′(x))2 − 3

(︃
f ′′(x)

f ′(x)

)︃2

+
f ′′′(x)

f ′(x)
. (5.6)

Second, again from (5.5), dividing by ((fn)′(f(x)))2, we obtain

(fn)′′(f(x))

((fn)′(f(x)))2
· (f ′(x))2 = − f ′′(x)

(fn)′(f(x))
.

Substituting this into the second term on the right-hand side of (5.4) gives

(fn+1)′′′(x)

(fn+1)′(x)
=

(fn)′′′(f(x))

(fn)′(f(x))
· (f ′(x))2 − 3

(︃
(fn)′′(f(x))

(fn)′(f(x))

)︃2

· (f ′(x))2

+
f ′′′(x)

f ′(x)
. (5.7)
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Thus, by adding (5.6) and (5.7), dividing by 2 and rearranging terms, we obtain

(fn+1)′′′(x)

(fn+1)′(x)
=

(︄
(fn)′′′(f(x))

(fn)′(f(x))
− 3

2

(︃
(fn)′′(f(x))

(fn)′(f(x))

)︃2
)︄

· (f ′(x))2

+
f ′′′(x)

f ′(x)
− 3

2

(︃
f ′′(x)

f ′(x)

)︃2

. (5.8)

Hence, assuming that (fn+1)′′(x) = 0 and that both expressions

(fn)′′′(f(x))

(fn)′(f(x))
− 3

2

(︃
(fn)′′(f(x))

(fn)′(f(x))

)︃2

(5.9)

and
f ′′′(x)

f ′(x)
− 3

2

(︃
f ′′(x)

f ′(x)

)︃2

(5.10)

are negative, it follows from (5.8) that the quotient

(fn+1)′′′(x)

(fn+1)′(x)

is negative, as desired.
Thus, for a given positive integer n, the Minimum Principle holds for (fn+1)′

provided that, for any non-vanishing critical point x ∈ I of (fn+1)′, the expressions
in (5.9) and (5.10) are negative.

Note that the expressions in (5.9) and (5.10) correspond to S(fn)(f(x)) and
Sf(x), respectively. Therefore, for any non-vanishing critical point x ∈ I of (fn+1)′,
(5.8) can be rewritten as

(fn+1)′′′(x)

(fn+1)′(x)
= S(fn)(f(x)) · (f ′(x))2 + Sf(x), (5.11)

which resembles the composition law given in (2.1), with h = fn and g = f . In fact,
by the definition of the Schwarzian derivative for fn+1 and (5.11), it follows directly
that, for any non-vanishing critical point x ∈ I of (fn+1)′,

S(fn+1)(x) = S(fn)(f(x)) · (f ′(x))2 + Sf(x). (5.12)

On the other hand, a straightforward computation shows that (5.12) holds for all
x ∈ I, leading to a remarkable consequence: the negative Schwarzian derivative
condition for f is preserved by iterates. Therefore, the Minimum Principle for the
iterates of f is guaranteed only by the requirement that the expression in (5.10)
is negative for all x ∈ I, which precisely corresponds to the negative Schwarzian
derivative condition for f .
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6 Conclusion

The negative Schwarzian derivative condition naturally emerges when looking for
a condition on f that guarantees that (fn)′ satisfies the Minimum Principle for all
positive integers n. This principle has significant dynamical implications, particu-
larly with respect to the type and number of positively oriented fixed points of f , as
stated in Singer’s Theorem. To the best of our knowledge, in the literature, there is
no satisfactory and simple explanation about the use of the Schwarzian derivative in
real one-dimensional dynamics. Therefore, we believe that this brief note is valuable
in order to shed light on this point.
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