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(C,2)(E,q) PRODUCT MEANS AND
FOURIER-STIELTJES SERIES

Jaeman Kim

Abstract. In this paper, as a sequel to [3], we generalize Fejer’s theorem on the determination
of jumps of functions of bounded variation to Fourier-Stieltjes series in terms of (C,2)(E, q) product

means.

1 Introduction

Let f be a real-valued function on the closed and bounded interval [a,b] and let

P = {xg,x1,...,x} be a partition of [a,b]. Then the variation of f with respect to
Pis

V(f;P)= Z |f(zi) = flziz1)]
and the total variation of f on [a,b] is

TV(f) = supV(f;P)

for all partition P of [a,b]. A real-valued function f on the closed and bounded
interval [a, ] is said to be a function of bounded variation if TV (f) is finite. From
now on let f be a function of bounded variation on [0,27]. It is well known that
such an f may have only discontinuities of the first kind, i.e., the left-hand limit
f(z7) and the right-hand limit f(z") exist. Throughout this paper, a function f of
bounded variation is normalized by the condition

fat) + fa)

fla) = T

The Fourier-Stieltjes coefficients of f (equivalently, the Fourier coefficients of df) are
defined by

A~ 27T .
) = 5= [ e arta)
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where k € Z and the integral is Riemann-Stieltjes integral. We write

df(x) ~ > df (k)™ (1.1)

keZ

and call this series the Fourier-Stieltjes series of f (equivalently, the Fourier series
of df). The nth symmetric partial sum of series in (1.1) is defined as

sn(df,x) = df(k)e'*.

Jk|<n

The following result is attributed to Fejer [1] (see the details in [5]): If f is a periodic
function of bounded variation on [0, 2], then for every 0 < x < 27, we have

lin, s (df, ) = —(f(a*) = J(@7)),

n—oo N

while for £ = 0 or £ = 27, we have

lim lsn(df,x) = %(f(oﬂ — f(277) 4+ e(f)),

n—oo n

where ¢(f) = 2ndf(0) = f(27) — £(0).
Given a sequence {s,}, we put
S0 = Sp,

1 o o o
S, =8, +s1+ ... +5s,,

2 _ 1 1 1
Sy, =8, +s1+...+5s,.

Similarly set
A0 =1,
A} = A2+ AS + ...+ A2,
A2 = AL+ AL+ .+ AL

A sequence {s,} or a series u,+uj +ug + ... with partial sums s,, is (C,2) summable
to the sum s if

{C2) L S
A%
as n — oo. More precisely [6],
c2 2 -
#02) = mkzo(n—k+l)sk—>s
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as n — oo. It is well known that (C, 1) summability of a sequence involves (C,2)
summability to the same limit [6]. On the other hand, a sequence {s,} or a series
U + u1 + ug + ... with partial sums s, is (E, q) summable to the sum s [2] if

n
t%E’q) = (1+1q)n kzo <Z) q" sk — s
as n — 0o
The method was first applied by Euler for ¢ = 1 to sum slowly convergent or
divergent series and the technique was later extended to arbitrary values of ¢ by
Knopp [4]. It is well known that this method is regular for ¢ > 0 [4]. The (C,2)(E, q)
product means is obtained by superimposing (C,2) means on (E,q) means and is

denoted by t%c’g)(E’Q). More precisely,

n

B _ 2 N ()
O (Ba) — CESCED) kZ:O( k+ 1),
_ 2 k1) (R
C (n+1)(n+2) kzo{ (1+q)F ZZ(; <Z.>q i} (1.2)

1t £ CPED g asn — 00, then the infinite series >~ uy is said to be (C,2)(FE, q)
summable to the sum s. The purpose of the present paper, as a sequel to [3], is to
extend the Fejer theorem for Fourier-Stieltjes series to (C,2)(E, ¢q) product means
of Fourier-Stieltjes series.

2 Main results

We recall the representation [6]

21

1
saldr.0) =~ [ Duta = vy, (21)
where .
1$ _sin(n + g)u
k=1
It follows from (1.2) and (2.3) that
1 27
AODEDdf,0) = = [ Lala — 0af(0) (2.3
™ Jo

where
n

B 2 (n—k+1) o= (k\ 5ir
L) = ooy 2! > (N e

k
— (1+9° =
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The following lemmas will be used in the proof of our theorem. For the sake of
completeness, we give the proof of [3, Lemma 2.1] here.

Lemma 1. For anyn € N,

k=0

We give a proof by induction on n

Base case: For n =1,
1 1
<O> qlioo + <1>q111 =1(1 Q)171~

Hence the statement P(1) holds true.
Induction step: Assume that for n = m, the statement P(m) holds true:

m

Z <7:> " =m1 4™t

k=0

It follows that

(m+ 1)1 +q)" =ml+¢)" ' (1+q)+(1+q"

= () tmasa +aso”

k=0
- é ( )amtmasa+ é (7)ot
_ kf% (Z‘)w’f(k 1) +k§:0 <k) mei—k
— 7:2:%1 (m; 1) m+1-kj,

because of () + (") = (m,:rl)
Hence the statement P(m+ 1) holds true, establishing the induction step. Therefore
the statement P(n) holds true for every natural number n. O

kst sk ok sk ok ok s ok sk sk ok ok sk sk ok sk sk sk ok sk sk sk s sk sk sk ok sk sk sk sk ok sk sk sk s sk sk sk ok sk ok sk sk ok sk sk sk s sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk skok ok sk ok

Surveys in Mathematics and its Applications 20 (2025), 381 — 388
https://www.utgjiu.ro/math/sma


https://www.utgjiu.ro/math/sma/v20/v20.html
https://www.utgjiu.ro/math/sma

(C,2)(FE,q) product means and Fourier-Stieltjes series 385

On the other hand, the following inequalities for the kernel L,, are obtained.

Lemma 2. (i) For alln and x,
1
|Lp(x)] <n+ 5 (2.5)

(i) For alln and 0 < x < 2,

|Ln(z)] < i

~ 2min{x, 27 — x}’

(2.6)

Proof. From (2.4) it follows that for all n and z,
1
Da(a)| < nt g

and for all n and 0 < z < 27,

™
D < .
D)l < 2min{x,2m — x}

Since all numbers (})¢"~* are nonnegative, inequalities (2.7) and (2.8) follow imme-

diately from (2.6) and Lemma 1. This completes the proof. O

Now we generalize a theorem of Fejer by establishing the following theorem:

Theorem 3. Let f be a periodic function of bounded variation on [0,2x]|. Then for
0 <z < 2m, we have

tim 2D y00E0 47 0y = L (1) - a7)) (2.7

n—00 n

while for x =0 or x = 2w, we have

tim 2D yCaE0 g 0y = Lip0) - pen) o). @8

n—00 n

where ¢(f) = 2rdf (0) = f(2r) — £(0).
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Proof. We shall carry out the proof in four steps.

(i) We consider the particular case when f is continuous at an inner point z (i.e.,
0 < x < 2m). As it is well known, then the total variation of f is also continuous at
x [4]. Therefore, given any € > 0, we can choose § = %
n sothat 0 < x — 6 < =+ < 27 and the total variation of f over the interval
[z — 0,z + ¢] does not exceed . Then we decompose the integral in (2.5) as follows:

tCAED (df x) = / / /27r Ln(z — t)df(t) = A+ B+ C.

for sufficiently large

Taking (2.7) and (2.8) into account, we get

\m<1<+5/“ﬁwm<l<+w<
< —(n+3 - < —(n e <en,

and

2
e o [ [l s g2y < va

which implies |A] 4+ |C| < O(y/n). Hence A+ B + C' = o(n) and this proves (2.9)
with f(z*) — f(z7) =0.

(ii) From (2.5) it follows that t%C’Q)(E’Q)(df, 0) = #{GHEQ) (df,2m). Hence it is enough
to prove (2.10) for x = 0. In this step, we consider the special case when

FO7) = f(2r7) +e(f) =0, (2.9)

which means that the function f(t) — f(27 —t) is continuous at ¢t = 0 from the right.
Therefore, given any ¢ > 0, we can choose § = %\%ﬂ

that the total variation of f(¢) — f(2m —t) over the interval [0, §] does not exceed «.
Now we decompose the integral in (2.5) as follows:

27—6
HO2ED) (g ) / / /
27

for sufficiently large n so

1 3 1 27—§
== [ Lo - fen o)+ - [T Lo = 4+ B,
™ Jo ™Js
where we made use of the evenness of the kernel L, (t). By Lemma 2, we have
1 1
]A]< (n+ = / ld(f(t) — f2m —1))| < (n+2)€<6n,
and s Ja
1 ™ n
B df(t)| < =—————TV(f) <
Bl< 55 [ O] gpF TV < VA
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which implies |B| < O(y/n). Hence A + B = o(n) and this proves (2.10) at 2 =0 in
the special case (2.11).

(iii) We shall prove (2.9) at an inner point z in the general case when f is discon-
tinuous. Now we introduce a new function g as follows:

g(t) = f(t) - %(f(f’) — f(z7))o(t — ), (2.10)
where ¢ is defined by )
o(t) = 5(7r —t) (2.11)

for 0 <t < 2m, ¢(0) = ¢(27) = 0, and continued periodically.
Observe that g is of bounded variation on [0, 27] and g is continuous at ¢ = z. Hence
the argument in step (i) applies to g in place of f and yields

tim 209 e

n—00 n

On the other hand, from (1.2) and (2.12) it follows that

1
to D ED (dg, x) = t{CDED(df, 2) — —(f(a*) = f@ NP ED (dg,0). (213)
™

D (dg, ) = 0. (2.12)

We recall that for 0 < z < 27, the Fourier-Stieltjes series of ¢ is given by

do(z) ~ % Z ke — Zcoskw. (2.14)

keZ—{0}

From (1.2), (2.16) and Lemma 1 it follows that

k
HO2(E:a) (g, 0) = (n+1 T Z{ ”_k“ Z(’“) si(d,0)}

B 2 n—k+ bk ki
‘<n+1><n+2>kzzo (1+F §<>q

2 (n—k+1)
(n+1)(n+2) &= (149"

n

B 2 kn—k+1)  n
- (n+1)(n+2)z I+  3(1+4q)

Now by virtue of (2.14), (??)e2.15) and the last equality, we obtain (2.9).
(iv) We shall prove (2.10) at the endpoint z = 0 (eqivalently, at x = 27) in the
general case when condition (2.11) is not satisfied. We define

g(t) = f(t) = —(F(0T) = f(277) + c(f)) (1),

)k—l

E(1+q

M:

~—

=w~
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where ¢(t) = 3(m —t).

We see that g is of bounded variation on [0, 27| and condition (2.11) is satisfied with
g in place of f. The rest of the proof are the same as in step (iii) above. Hence
Theorem 3 is completely proved. ]

References

[1] L. Fejer, Uber die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe,
J. Reine Angew Math. 142 (1913), 165-188. MR1580866. JFM 44.0483.01.

[2] G.H. Hardy, Divergent Series, Oxford Univ. Press, Oxford, 1949. MR0030620.
Zbl 0032.05801.

(3] J. Kim, Determination of a jump by (E,q) means of Fourier-Stieltjes series,
Publications de I'Institut Mathématique (Beograd) (N.S.) 113 (2023), 93-97.
MR4599717. Zbl 1538.42006.

[4] K. Knopp, Ueber das Eulersche Summierungsverfahren, Math. Z. 15 (1922),
226-253. MR1544570. JFM 48.0232.01.

[5] F. Moricz, Fejer type theorems for Fourier-Stieltjes series, Analysis Mathemat-
ica, 30 (2004), 123-136. MR2075721. Zbl 1067.42002.

[6] A. Zygmund, Trigonometric Series, Vol. 1, Cambridge Univ. Press, Cambridge,
1959. MR0236587. Zbl 0085.05601.

Jaeman Kim

Department of Mathematics Education, Kangwon National University,
Chunchon 200-701, Kangwon-Do, Korea.

E-mail: jaeman64@kangwon.ac.kr

License

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense.

Received: October 01, 2025; Accepted: December 23, 2025;
Published: December 24, 2025.

Sk ok koo ok ok >k kR Sk ok kok ok ok ok kook sk ok kok ok sk ok skok sk sk skokook skook kokook sk ok skokook sk kokok sk ok kokook sk okokok sk sk skokosk sk sk skokosk sk skokok skok kokok skokokok

Surveys in Mathematics and its Applications 20 (2025), 381 — 388
https://www.utgjiu.ro/math/sma


https://mathscinet.ams.org/mathscinet/relay-station?mr=1580866
https://zbmath.org/?q=an:44.0483.01
https://mathscinet.ams.org/mathscinet/relay-station?mr=0030620
https://zbmath.org/?q=an:0032.05801
https://mathscinet.ams.org/mathscinet/relay-station?mr=4599717
https://zbmath.org/?q=an:1538.42006
https://mathscinet.ams.org/mathscinet/relay-station?mr=1544570
https://zbmath.org/?q=an:48.0232.01
https://mathscinet.ams.org/mathscinet/relay-station?mr=2075721
https://zbmath.org/?q=an:1067.42002
https://mathscinet.ams.org/mathscinet/relay-station?mr=0236587
https://zbmath.org/?q=an:0085.05601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.utgjiu.ro/math/sma/v20/v20.html
https://www.utgjiu.ro/math/sma

	Introduction
	Main results

