

$(C, 2)(E, q)$ PRODUCT MEANS AND FOURIER-STIELTJES SERIES

Jaeman Kim

Abstract. In this paper, as a sequel to [3], we generalize Fejer's theorem on the determination of jumps of functions of bounded variation to Fourier-Stieltjes series in terms of $(C, 2)(E, q)$ product means.

1 Introduction

Let f be a real-valued function on the closed and bounded interval $[a, b]$ and let $P = \{x_0, x_1, \dots, x_k\}$ be a partition of $[a, b]$. Then the variation of f with respect to P is

$$V(f; P) = \sum_{i=1}^k |f(x_i) - f(x_{i-1})|$$

and the total variation of f on $[a, b]$ is

$$TV(f) = \sup V(f; P)$$

for all partition P of $[a, b]$. A real-valued function f on the closed and bounded interval $[a, b]$ is said to be a function of bounded variation if $TV(f)$ is finite. From now on let f be a function of bounded variation on $[0, 2\pi]$. It is well known that such an f may have only discontinuities of the first kind, i.e., the left-hand limit $f(x^-)$ and the right-hand limit $f(x^+)$ exist. Throughout this paper, a function f of bounded variation is normalized by the condition

$$f(x) = \frac{f(x^+) + f(x^-)}{2}.$$

The Fourier-Stieltjes coefficients of f (equivalently, the Fourier coefficients of df) are defined by

$$\hat{df}(k) = \frac{1}{2\pi} \int_0^{2\pi} e^{-ikx} df(x),$$

2020 Mathematics Subject Classification: 42A24, 42A38.

Keywords: Fourier-Stieltjes series; $(C, 2)(E, q)$ product means.

where $k \in Z$ and the integral is Riemann-Stieltjes integral. We write

$$df(x) \sim \sum_{k \in Z} \hat{df}(k) e^{ikx} \quad (1.1)$$

and call this series the Fourier-Stieltjes series of f (equivalently, the Fourier series of df). The n th symmetric partial sum of series in (1.1) is defined as

$$s_n(df, x) = \sum_{|k| \leq n} \hat{df}(k) e^{ikx}.$$

The following result is attributed to Fejer [1] (see the details in [5]): If f is a periodic function of bounded variation on $[0, 2\pi]$, then for every $0 < x < 2\pi$, we have

$$\lim_{n \rightarrow \infty} \frac{1}{n} s_n(df, x) = \frac{1}{\pi} (f(x^+) - f(x^-)),$$

while for $x = 0$ or $x = 2\pi$, we have

$$\lim_{n \rightarrow \infty} \frac{1}{n} s_n(df, x) = \frac{1}{\pi} (f(0^+) - f(2\pi^-) + c(f)),$$

where $c(f) = 2\pi \hat{df}(0) = f(2\pi) - f(0)$.

Given a sequence $\{s_n\}$, we put

$$s_n^o = s_n,$$

$$s_n^1 = s_o^o + s_1^o + \dots + s_n^o,$$

$$s_n^2 = s_o^1 + s_1^1 + \dots + s_n^1.$$

Similarly set

$$A_n^o = 1,$$

$$A_n^1 = A_o^o + A_1^o + \dots + A_n^o,$$

$$A_n^2 = A_o^1 + A_1^1 + \dots + A_n^1.$$

A sequence $\{s_n\}$ or a series $u_o + u_1 + u_2 + \dots$ with partial sums s_n is $(C, 2)$ summable to the sum s if

$$t_n^{(C,2)} := \frac{s_n^2}{A_n^2} \rightarrow s$$

as $n \rightarrow \infty$. More precisely [6],

$$t_n^{(C,2)} = \frac{2}{(n+1)(n+2)} \sum_{k=0}^n (n-k+1) s_k \rightarrow s$$

Surveys in Mathematics and its Applications **20** (2025), 381 – 388

<https://www.utgjiu.ro/math/sma>

as $n \rightarrow \infty$. It is well known that $(C, 1)$ summability of a sequence involves $(C, 2)$ summability to the same limit [6]. On the other hand, a sequence $\{s_n\}$ or a series $u_0 + u_1 + u_2 + \dots$ with partial sums s_n is (E, q) summable to the sum s [2] if

$$t_n^{(E,q)} = \frac{1}{(1+q)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} s_k \rightarrow s$$

as $n \rightarrow \infty$

The method was first applied by Euler for $q = 1$ to sum slowly convergent or divergent series and the technique was later extended to arbitrary values of q by Knopp [4]. It is well known that this method is regular for $q \geq 0$ [4]. The $(C, 2)(E, q)$ product means is obtained by superimposing $(C, 2)$ means on (E, q) means and is denoted by $t_n^{(C,2)(E,q)}$. More precisely,

$$\begin{aligned} t_n^{(C,2)(E,q)} &= \frac{2}{(n+1)(n+2)} \sum_{k=0}^n (n-k+1) t_k^{(E,q)} \\ &= \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \left\{ \frac{(n-k+1)}{(1+q)^k} \sum_{i=0}^k \binom{k}{i} q^{k-i} s_i \right\}. \end{aligned} \quad (1.2)$$

If $t_n^{(C,2)(E,q)} \rightarrow s$ as $n \rightarrow \infty$, then the infinite series $\sum_{k=0}^{\infty} u_k$ is said to be $(C, 2)(E, q)$ summable to the sum s . The purpose of the present paper, as a sequel to [3], is to extend the Fejér theorem for Fourier-Stieltjes series to $(C, 2)(E, q)$ product means of Fourier-Stieltjes series.

2 Main results

We recall the representation [6]

$$s_n(df, x) = \frac{1}{\pi} \int_0^{2\pi} D_n(x-t) df(t), \quad (2.1)$$

where

$$D_n(u) = \frac{1}{2} + \sum_{k=1}^n \cos k u = \frac{\sin(n + \frac{1}{2})u}{2 \sin \frac{u}{2}}. \quad (2.2)$$

It follows from (1.2) and (2.3) that

$$t_n^{(C,2)(E,q)}(df, x) = \frac{1}{\pi} \int_0^{2\pi} L_n(x-t) df(t), \quad (2.3)$$

where

$$L_n(u) = \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \left\{ \frac{(n-k+1)}{(1+q)^k} \sum_{i=0}^k \binom{k}{i} q^{k-i} D_i(u) \right\}. \quad (2.4)$$

Surveys in Mathematics and its Applications **20** (2025), 381 – 388

<https://www.utgjiu.ro/math/sma>

The following lemmas will be used in the proof of our theorem. For the sake of completeness, we give the proof of [3, Lemma 2.1] here.

Lemma 1. *For any $n \in N$,*

$$\sum_{k=0}^n \binom{n}{k} q^{n-k} k = n(1+q)^{n-1}$$

Proof. Let $P(n)$ be the statement

$$\sum_{k=0}^n \binom{n}{k} q^{n-k} k = n(1+q)^{n-1}.$$

We give a proof by induction on n

Base case: For $n = 1$,

$$\binom{1}{0} q^{1-0} 0 + \binom{1}{1} q^{1-1} 1 = 1(1+q)^{1-1}.$$

Hence the statement $P(1)$ holds true.

Induction step: Assume that for $n = m$, the statement $P(m)$ holds true:

$$\sum_{k=0}^m \binom{m}{k} q^{m-k} k = m(1+q)^{m-1}.$$

It follows that

$$\begin{aligned} (m+1)(1+q)^m &= m(1+q)^{m-1}(1+q) + (1+q)^m \\ &= (\sum_{k=0}^m \binom{m}{k} q^{m-k} k)(1+q) + (1+q)^m \\ &= (\sum_{k=0}^m \binom{m}{k} q^{m-k} k)(1+q) + \sum_{k=0}^m \binom{m}{k} q^{m-k} \\ &= \sum_{k=0}^m \binom{m}{k} q^{m-k} (k+1) + \sum_{k=0}^m \binom{m}{k} q^{m+1-k} k \\ &= \sum_{k=0}^{m+1} \binom{m+1}{k} q^{m+1-k} k \end{aligned}$$

because of $\binom{m}{k} + \binom{m}{k-1} = \binom{m+1}{k}$.

Hence the statement $P(m+1)$ holds true, establishing the induction step. Therefore the statement $P(n)$ holds true for every natural number n . \square

On the other hand, the following inequalities for the kernel L_n are obtained.

Lemma 2. (i) For all n and x ,

$$|L_n(x)| \leq n + \frac{1}{2}. \quad (2.5)$$

(ii) For all n and $0 < x < 2\pi$,

$$|L_n(x)| \leq \frac{\pi}{2\min\{x, 2\pi - x\}}. \quad (2.6)$$

Proof. From (2.4) it follows that for all n and x ,

$$|D_n(x)| \leq n + \frac{1}{2}$$

and for all n and $0 < x < 2\pi$,

$$|D_n(x)| \leq \frac{\pi}{2\min\{x, 2\pi - x\}}.$$

Since all numbers $\binom{n}{k}q^{n-k}$ are nonnegative, inequalities (2.7) and (2.8) follow immediately from (2.6) and Lemma 1. This completes the proof. \square

Now we generalize a theorem of Fejer by establishing the following theorem:

Theorem 3. Let f be a periodic function of bounded variation on $[0, 2\pi]$. Then for $0 < x < 2\pi$, we have

$$\lim_{n \rightarrow \infty} \frac{3(1+q)}{n} t_n^{(C,2)(E,q)}(df, x) = \frac{1}{\pi} (f(x^+) - f(x^-)), \quad (2.7)$$

while for $x = 0$ or $x = 2\pi$, we have

$$\lim_{n \rightarrow \infty} \frac{3(1+q)}{n} t_n^{(C,2)(E,q)}(df, x) = \frac{1}{\pi} (f(0^+) - f(2\pi^-) + c(f)), \quad (2.8)$$

where $c(f) = 2\pi \hat{f}(0) = f(2\pi) - f(0)$.

Surveys in Mathematics and its Applications **20** (2025), 381 – 388

<https://www.utgjiu.ro/math/sma>

Proof. We shall carry out the proof in four steps.

(i) We consider the particular case when f is continuous at an inner point x (i.e., $0 < x < 2\pi$). As it is well known, then the total variation of f is also continuous at x [4]. Therefore, given any $\varepsilon > 0$, we can choose $\delta = \frac{TV(f)+1}{\sqrt{n}}$ for sufficiently large n so that $0 < x - \delta < x + \delta < 2\pi$ and the total variation of f over the interval $[x - \delta, x + \delta]$ does not exceed ε . Then we decompose the integral in (2.5) as follows:

$$t_n^{(C,2)(E,q)}(df, x) = \frac{1}{\pi} \left(\int_0^{x-\delta} + \int_{x-\delta}^{x+\delta} + \int_{x+\delta}^{2\pi} \right) L_n(x-t) df(t) = A + B + C.$$

Taking (2.7) and (2.8) into account, we get

$$|B| \leq \frac{1}{\pi} (n + \frac{1}{2}) \int_{x-\delta}^{x+\delta} |df(t)| \leq \frac{1}{\pi} (n + 1) \varepsilon < \varepsilon n,$$

and

$$|A| + |C| \leq \frac{1}{2\delta} \left(\int_0^{x-\delta} + \int_{x+\delta}^{2\pi} \right) |df(t)| \leq \frac{\sqrt{n}}{2TV(f) + 2} 2TV(f) \leq \sqrt{n},$$

which implies $|A| + |C| \leq O(\sqrt{n})$. Hence $A + B + C = o(n)$ and this proves (2.9) with $f(x^+) - f(x^-) = 0$.

(ii) From (2.5) it follows that $t_n^{(C,2)(E,q)}(df, 0) = t_n^{(C,2)(E,q)}(df, 2\pi)$. Hence it is enough to prove (2.10) for $x = 0$. In this step, we consider the special case when

$$f(0^+) - f(2\pi^-) + c(f) = 0, \quad (2.9)$$

which means that the function $f(t) - f(2\pi - t)$ is continuous at $t = 0$ from the right. Therefore, given any $\varepsilon > 0$, we can choose $\delta = \frac{TV(f)+1}{2\sqrt{n}}$ for sufficiently large n so that the total variation of $f(t) - f(2\pi - t)$ over the interval $[0, \delta]$ does not exceed ε . Now we decompose the integral in (2.5) as follows:

$$\begin{aligned} t_n^{(C,2)(E,q)}(df, 0) &= \frac{1}{\pi} \left(\int_0^\delta + \int_\delta^{2\pi-\delta} + \int_{2\pi-\delta}^{2\pi} \right) L_n(t) df(t) \\ &= \frac{1}{\pi} \int_0^\delta L_n(t) d(f(t) - f(2\pi - t)) + \frac{1}{\pi} \int_\delta^{2\pi-\delta} L_n(t) df(t) = A + B, \end{aligned}$$

where we made use of the evenness of the kernel $L_n(t)$. By Lemma 2, we have

$$|A| \leq \frac{1}{\pi} (n + \frac{1}{2}) \int_0^\delta |d(f(t) - f(2\pi - t))| \leq \frac{1}{\pi} (n + \frac{1}{2}) \varepsilon < \varepsilon n,$$

and

$$|B| \leq \frac{1}{2\delta} \int_\delta^{2\pi-\delta} |df(t)| \leq \frac{\sqrt{n}}{TV(f) + 1} TV(f) \leq \sqrt{n},$$

which implies $|B| \leq O(\sqrt{n})$. Hence $A + B = o(n)$ and this proves (2.10) at $x = 0$ in the special case (2.11).

(iii) We shall prove (2.9) at an inner point x in the general case when f is discontinuous. Now we introduce a new function g as follows:

$$g(t) = f(t) - \frac{1}{\pi}(f(x^+) - f(x^-))\phi(t - x), \quad (2.10)$$

where ϕ is defined by

$$\phi(t) = \frac{1}{2}(\pi - t) \quad (2.11)$$

for $0 < t < 2\pi$, $\phi(0) = \phi(2\pi) = 0$, and continued periodically.

Observe that g is of bounded variation on $[0, 2\pi]$ and g is continuous at $t = x$. Hence the argument in step (i) applies to g in place of f and yields

$$\lim_{n \rightarrow \infty} \frac{3(1+q)}{n} t_n^{(C,2)(E,q)}(dg, x) = 0. \quad (2.12)$$

On the other hand, from (1.2) and (2.12) it follows that

$$t_n^{(C,2)(E,q)}(dg, x) = t_n^{(C,2)(E,q)}(df, x) - \frac{1}{\pi}(f(x^+) - f(x^-))t_n^{(C,2)(E,q)}(d\phi, 0). \quad (2.13)$$

We recall that for $0 < x < 2\pi$, the Fourier-Stieltjes series of ϕ is given by

$$d\phi(x) \sim \frac{1}{2} \sum_{k \in \mathbb{Z} - \{0\}} e^{ikx} = \sum_{k=1}^{\infty} \cos kx. \quad (2.14)$$

From (1.2), (2.16) and Lemma 1 it follows that

$$\begin{aligned} t_n^{(C,2)(E,q)}(d\phi, 0) &= \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \left\{ \frac{(n-k+1)}{(1+q)^k} \sum_{i=0}^k \binom{k}{i} q^{k-i} s_i(d\phi, 0) \right\} \\ &= \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \frac{(n-k+1)}{(1+q)^k} \sum_{i=0}^k \binom{k}{i} q^{k-i} i \\ &= \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \frac{(n-k+1)}{(1+q)^k} k(1+q)^{k-1} \\ &= \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \frac{k(n-k+1)}{(1+q)^k} = \frac{n}{3(1+q)}. \end{aligned}$$

Now by virtue of (2.14), (2.13) and the last equality, we obtain (2.9).

(iv) We shall prove (2.10) at the endpoint $x = 0$ (equivalently, at $x = 2\pi$) in the general case when condition (2.11) is not satisfied. We define

$$g(t) = f(t) - \frac{1}{\pi}(f(0^+) - f(2\pi^-) + c(f))\phi(t),$$

where $\phi(t) = \frac{1}{2}(\pi - t)$.

We see that g is of bounded variation on $[0, 2\pi]$ and condition (2.11) is satisfied with g in place of f . The rest of the proof are the same as in step (iii) above. Hence Theorem 3 is completely proved. \square

References

- [1] L. Fejer, *Über die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe*, J. Reine Angew Math. **142** (1913), 165-188. [MR1580866](#). [JFM 44.0483.01](#).
- [2] G.H. Hardy, *Divergent Series*, Oxford Univ. Press, Oxford, 1949. [MR0030620](#). [Zbl 0032.05801](#).
- [3] J. Kim, *Determination of a jump by (E, q) means of Fourier-Stieltjes series*, Publications de l’Institut Mathématique (Beograd) (N.S.) **113** (2023), 93-97. [MR4599717](#). [Zbl 1538.42006](#).
- [4] K. Knopp, *Ueber das Eulersche Summierungsverfahren*, Math. Z. **15** (1922), 226-253. [MR1544570](#). [JFM 48.0232.01](#).
- [5] F. Móricz, *Fejer type theorems for Fourier-Stieltjes series*, Analysis Mathematica, **30** (2004), 123-136. [MR2075721](#). [Zbl 1067.42002](#).
- [6] A. Zygmund, *Trigonometric Series*, Vol. 1, Cambridge Univ. Press, Cambridge, 1959. [MR0236587](#). [Zbl 0085.05601](#).

Jaeman Kim

Department of Mathematics Education, Kangwon National University,
Chunchon 200-701, Kangwon-Do, Korea.
E-mail: jaeman64@kangwon.ac.kr

License

This work is licensed under a [Creative Commons Attribution 4.0 International License](#).

Received: October 01, 2025; Accepted: December 23, 2025;
Published: December 24, 2025.

Surveys in Mathematics and its Applications **20** (2025), 381 – 388
<https://www.utgjiu.ro/math/sma>