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ON THE BAUM-CONNES CONJECTURE FOR D∞

Eugenia Ellis, Emanuel Rodŕıguez Cirone and Gisela Tartaglia

Abstract. One of the most significant contributions to the proof of the Baum-Connes con-

jecture was made by Higson and Kasparov. Their proof of the conjecture for a-T-menable groups

is a highly technical achievement. Some details of this result were later exposed in a survey by

Guentner and Higson, where the conjecture for Zn is approached as an intermediate step to the

general case. In this work we review the arguments given for Zn in the aforementioned survey and

show that they apply to the case of the infinite dihedral group.

1 Introduction

The K-theory of C∗-algebras is a growing area of research with applications to index
theory, noncommutative geometry and classification of C∗-algebras. A useful tool
for computing the K-theory of group C∗-algebras is the Baum-Connes conjecture,
introduced in [1] using Kasparov’s KK-theory. For a countable discrete group G
and a G-C∗-algebra A, the conjecture states that certain assembly map

µr : K
top(G,A) → K(C∗

r (G,A))

is an isomorphism, where the left hand side is defined using KK-groups. A different
assembly map was formulated by Davis and Lück [3] replacing the left hand side
with a homotopy theoretic construction. Both assembly maps were shown to be
equivalent in [13]. The conjecture was proved for a large class of groups though it is
known not to hold for general G and A; see [11]. For example, the conjecture was
proved for a-T-menable groups [10], hyperbolic groups [14] and one-relator groups
[2]. For a comprehensive and up-to-date exposition on the Baum-Connes conjecture,
we refer the reader to the survey [5].
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One of the main contributions regarding the Baum-Connes conjecture is the
work of Higson and Kasparov, who proved in [10] that the conjecture holds for
a-T-menable groups (i.e. groups that act affine, properly and isometrically on a
Hilbert space). In their work, Higson and Kasparov used asymptotic morphisms and
described the left hand side of the assembly map in terms of G-equivariant E-theory
groups [7]. The paper [10] is technically involved and its main ideas are carefully
explained in [8], where the conjecture for finite groups and for Zn is discussed before
approaching the general case. In this work we go one step further in the list of
examples and expose the proof of the conjecture for the infinite dihedral group D∞.
Following the arguments given in [8], we use the fact that D∞ acts on a finite-
dimensional Euclidean space to do some calculations explicitly and to avoid part of
the technical machinery of [10].

The homotopy-theoretic construction by Davis and Lück [3] provides a frame-
work for defining an assembly map to compute the algebraic K-theory of the group
ring ZD∞. In [4] we examined the controlled topology tools related to this assembly
map. Our motivation for reviewing the Higson-Kasparov proof of the Baum-Connes
conjecture for D∞ was to explore, in a simple example, the methods used to compute
the topological K-theory groups.

2 Preliminaries

In this section we gather from [8] relevant definitions and results needed to state
and prove the Baum-Connes conjecture with coefficients for the group D∞.

2.1 Graded G-C∗-algebras

Let A be a C∗-algebra. A grading on A is given by a ∗-homomorphism α : A → A
such that α2 = 1. Equivalently, a grading is given by two ∗-subspaces A0 and A1

satisfying A = A0 ⊕ A1, and AiAj ⊆ Ai+j (mod 2). Elements of A0 (those a ∈ A
such that α(a) = a) are called even graded, and elements of A1 (those a ∈ A such
that α(a) = −a) are called odd graded. Throughout this article, all C∗-algebras will
be graded.

Example 1. Let S denote the C∗-algebra C0(R) of continuous, complex valued
functions on R that vanish at infinity, with grading operator given by f(x) ↦→ f(−x).
This grading induces the decomposition S = {even functions} ⊕ {odd functions}.

Example 2. A graded Hilbert space is a Hilbert space H equipped with an orthogonal
decomposition H = H0 ⊕ H1. This grading induces a grading on the C∗-algebra
B(H) of bounded operators on H as follows. First note that every T ∈ B(H) can be
identified with a 2 by 2 matrix, then declare the diagonal matrices to be even, and
the off-diagonal ones to be odd.
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Throughout this paper, G is a countable discrete group. A graded G-C∗-algebra is
a C∗-algebraA equipped with an action ofG by grading-preserving ∗-automorphisms.

2.2 Maximal tensor product

Let A and B be graded C∗-algebras and let Aˆ︁⊙B be the algebraic tensor product
of the underlying vector spaces. Endow Aˆ︁⊙B with the multiplication, involution
and grading given by the following formulas on elementary tensors of homogeneous
elements:

(a1ˆ︁⊙b1)(a2ˆ︁⊙b2) = (−1)∂b1∂a2a1a2ˆ︁⊙b1b2

(aˆ︁⊙b)∗ = (−1)∂a∂ba∗ˆ︁⊙b∗

∂(aˆ︁⊙b) = ∂a+ ∂b (mod 2)

Here, ∂a = 0 for a ∈ A0 and ∂a = 1 for a ∈ A1. The maximal graded tensor product
Aˆ︁⊗B is the completion of Aˆ︁⊙B with respect to the maximal norm; see for example
[8, Def. 1.9]. It has the following universal property: if C is a graded C∗-algebra
and if f : A → C and g : B → C are graded ∗-homomorphisms whose images
graded-commute, then there exists a unique graded ∗-homomorphism Aˆ︁⊗B → C
that maps aˆ︁⊗b to f(a)g(b). Moreover, if f : A → C and g : B → D are graded ∗-
homomorphisms, then there exists a unique graded ∗-homomorphism Aˆ︁⊗B → C ˆ︁⊗D
that maps aˆ︁⊗b to f(a)ˆ︁⊗g(b).

2.3 Crossed products

Let A be a graded G-C∗-algebra and let Cc(G,A) be the linear space of finitely
supported, A-valued functions on G. Then Cc(G,A) is a graded involutive algebra
with convolution multiplication. The involution is defined by f∗(g) = g · (f(g−1)∗)
for f ∈ Cc(G,A) and g ∈ G and the grading automorphism acts pointwise. The
full crossed product graded C∗-algebra C∗(G,A) is the completion of Cc(G,A) in the
smallest C∗-norm that makes all the covariant representations continuous; see [8,
Def. 2.19]. The reduced crossed product graded C∗-algebra C∗

r (G,A) is the image
of C∗(G,A) in the regular representation on ℓ2(G,A); see [8, Def. 2.21]. It is well
known that C∗(G,A) = C∗

r (G,A) if G is amenable; see for example [16, Sec. 7.2].

2.4 Asymptotic morphisms

Let A and B be graded C∗-algebras. An asymptotic morphism φ : A ‧‧➡ B is a
family of functions {φt : A → B}t≥1 such that the function [1,∞) → B, t ↦→ φt(a),
is continuous and bounded for every a ∈ A, and such that the following asymptotic
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conditions are satisfied:

φt(a1a2)− φt(a1)φt(a2) −−−→
t→∞

0

φt(a1 + a2)− φt(a1)− φt(a2) −−−→
t→∞

0

φt(λa1)− λφt(a1) −−−→
t→∞

0

φt(a
∗
1)− φt(a1)

∗ −−−→
t→∞

0

αB(φt(a1))− φt(αA(a1)) −−−→
t→∞

0

Here, a1, a2 ∈ A, λ ∈ C, and αA, αB are the grading morphisms of A and B respec-
tively. Note that any graded ∗-homomorphism ϕ : A → B determines a constant
asymptotic morphism ϕt = ϕ for all t ≥ 1.

If A and B are graded G-C∗-algebras, an equivariant asymptotic morphism φ :
A ‧‧➡ B is an asymptotic morphism φ such that φt(g · a)− g · φt(a) → 0 as t ↦→ ∞,
for all a ∈ A and all g ∈ G.

Two (equivariant) asymptotic morphisms φ0, φ1 : A ‧‧➡ B are called:

� asymptotically equivalent if limt→∞∥φ0
t (a)− φ1

t (a)∥B = 0 for every a ∈ A;

� homotopy equivalent if there exists an asymptotic morphism φ : A ‧‧➡ C([0, 1], B)
such that φ(a)(0) = φ0(a) and φ(a)(1) = φ1(a) for every a ∈ A.

We write JA,BK for the set of homotopy classes of asymptotic morphisms from A to
B. If A and B are graded G-C∗-algebras, we write JA,BKG for the set of homotopy
classes of equivariant asymptotic morphisms from A to B.

2.5 E-Theory groups

Let A and B be separable graded C∗-algebras. Put

E(A,B) := JS ˆ︁⊗Aˆ︁⊗K(H), Bˆ︁⊗K(H)K

where K(H) ⊂ B(H) is the subalgebra of compact operators. These sets E(A,B)
equipped with the sum induced by the direct sum of asymptotic morphisms are
indeed abelian groups, see [8, Lemma 2.1]. They depend contravariantly on A and
covariantly on B with respect to graded ∗-homomorphisms. There exists a bilinear
composition law E(A,B) ⊗ E(B,C) → E(A,C) that makes the groups E(A,B)
into the hom-sets of an additive category whose objects are separable C∗-algebras.
Moreover, we can recover K-theory groups from E-theory since we have E(C, A) ∼=
K(A) for any separable C∗-algebra A, where K stands for the K-theory of graded
C∗-algebras.

******************************************************************************
Surveys in Mathematics and its Applications 20 (2025), 389 – 402

https://www.utgjiu.ro/math/sma

https://www.utgjiu.ro/math/sma/v20/v20.html
https://www.utgjiu.ro/math/sma


On the Baum-Connes conjecture for D∞ 393

To define equivariant E-theory groups, let HG be the infinite Hilbert space direct
sum:

HG =
∞⨁︂
n=0

ℓ2(G)

This Hilbert space is equipped with the regular representation ofG on each summand
and graded so that the even numbered summands are even and the odd numbered
summands are odd. For graded separable G-C∗-algebras A and B put:

EG(A,B) := JS ˆ︁⊗Aˆ︁⊗K(HG), Bˆ︁⊗K(HG)KG

These sets EG(A,B) are the hom-sets of an additive category whose objects are the
graded separable G-C∗-algebras. There is a descent functor from the G-equivariant
E-theory category to the E-theory category that sends a G-C∗-algebra A to the
maximal crossed product C∗(G,A); see [8, Theorem 2.13].

The following definition will be useful later on.

Definition 3. Let U be a separable, Z2-graded Hilbert space equipped with a family
of unitary G-actions parametrized by t ∈ [1,∞). This family induces a family of
actions on B(U) by conjugation:

(g ·t T )(u) = g ·t (T (g−1 ·t u)).

We call the family a continuous family of G-actions if for every g ∈ G and every
T ∈ K(U), the map t ↦→ g ·t T is norm continuous in t. Suppose now that A and B
are G-C∗-algebras, and ϕ : S ˆ︁⊗A ‧‧➡ Bˆ︁⊗K(U) is an asymptotic morphism. We say
that ϕ is equivariant with respect to the given family of G-actions if

lim
t→∞

∥ϕt(g · x)− g ·t (ϕt(x))∥ = 0.

Remark 4. By [8, Remark 2.6], if ϕ : S ˆ︁⊗A ‧‧➡ Bˆ︁⊗K(U) is equivariant with respect
to a continuous family of G-actions, then ϕ determines a class in EG(A,B).

2.6 The Baum-Connes assembly map

Let D be a separable G-C∗-algebra. The topological K-theory of G with coefficients
in D is defined by

Ktop(G,D) = lim
→

EG(C0(X), D)

where the limit is taken over the collection of G-invariant and G-compact subspaces
X of the universal proper G-space EG ([8, Section 2.12]).

The (full) Baum-Connes assembly map with coefficients in D is the map

µ : Ktop(G,D) → K(C∗(G,D)) (2.1)
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which is obtained as a limit of compositions

EG(C0(X), D)
desc−−→ E(C∗(G,C0(X)), C∗(G,D))

[p]−→ E(C, C∗(G,D))

of the descent homomorphism and the homomorphism induced by the class of a
projection associated to a cutoff function (for details see [8, Section 2.14]). Com-
posing the assembly µ with the map from K(C∗(G,D)) to K(C∗

r (G,D)) induced
by the surjective homomorphism C∗(G,D) → C∗

r (G,D), one obtains the (reduced)
Baum-Connes assembly map with coefficients in D:

µr : K
top(G,D) → K(C∗

r (G,D)).

The Baum-Connes conjecture (with coefficients) asserts that the assembly map
µr is an isomorphism for every separable G-C∗-algebra D.

Note that for finite G the conjecture is true, as it is equivalent to a well-known
result of Green and Julg (see [6] and [12]). An important tool for the study of the
conjecture is the notion of proper algebra:

A G-C∗-algebra B is called proper if there exists a locally compact proper G-
space Z, and an equivariant ∗-homomorphism ϕ from C0(Z) into the grading-degree
zero part of the center of the multiplier algebra of B, such that ϕ(C0(Z)) · B is
norm-dense in B.

For a proper G-C∗-algebra B the full and reduced crossed product C∗(G,B) and
C∗
r (G,B) coincide, and the Baum-Connes conjecture is true ([7, Thm.13.1]).
For general coefficient algebras the following theorem provides a strategy for

studying the conjecture:

Theorem 5. [8, Thm. 2.20] Let G be a countable discrete group. Suppose there
exists a proper G-C∗-algebra B and elements β ∈ EG(C, B) and α ∈ EG(B,C) such
that

α ◦ β ∈ E(C,C).
Then the Baum-Connes assembly map µ : Ktop(G,D) → K(C∗(G,D)) is an iso-
morphism for every separable G-C∗-algebra D.

The proof of this result is based on the commutativity of the diagram

Ktop(G,Cˆ︁⊗D)
µ →→

β∗
↓↓

K(C∗(G,Cˆ︁⊗D))

β∗
↓↓

Ktop(G,Bˆ︁⊗D)
µ

∼=
→→

α∗
↓↓

K(C∗(G,Bˆ︁⊗D))

α∗
↓↓

Ktop(G,Cˆ︁⊗D)
µ →→ K(C∗(G,Cˆ︁⊗D))

and the fact that for a proper G-C∗-algebra B, Bˆ︁⊗D is again proper for every
separable G-C∗-algebra D.
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3 The Baum-Connes conjecture for D∞

In this section we revisit the proof the Baum-Connes conjecture given in [10] for
the group D∞ = ⟨ρ, σ | σ2 = 1, σρσ = ρ−1⟩. Note that D∞ is an amenable group,
since it is elementary amenable, and this implies C∗(D∞, A) = C∗

r (D∞, A) for every
D∞-C∗-algebra A. We start by constructing a proper D∞-C∗-algebra C(R).

The group D∞ acts on R on the left by σ · x = −x and ρ · x = x − 1. This
action is affine and metrically proper. The latter means that for every R > 0 and
for every x ∈ R, there are only finitely many g ∈ D∞ with |x− g · x| ≤ R (note that
|x− ρlσ · x| ≥ ||l| − |2x||, ∀l ∈ Z).

Let Cliff(R) be the complexified Clifford algebra of R. It can be identified with
the unital Z2-graded C∗-algebra C⊕C. The homogeneous elements of grading-degree
one are those of the form (z,−z), and the grading-degree zero ones are of the form
(w,w). The morphism π : D∞ → {±1} determined by π(ρ) = 1 and π(σ) = −1
is an orthogonal representation of D∞ that induces an action of D∞ on Cliff(R).
If we write Cliff(R) = C ⊕ C we have π(ρ)(z, w) = (z, w) and π(σ)(z, w) = (w, z).
We will write C(R) for the C∗-algebra C0(R,Cliff(R)) = C0(R)⊕ C0(R), which is a
D∞-algebra with the action given by:

(g · h)(x) = π(g)(h(g−1 · x)), ∀g ∈ D∞, h ∈ C(R), x ∈ R.

Lemma 6. C(R) is a proper D∞-C∗-algebra.

Proof. We will consider the locally compact space R. The action of D∞ on R is
proper iff for every compact subset K of R, the set {g ∈ D∞ | g ·K ∩K ̸= ∅} is
finite. Given a compact subset K ⊆ R, there exists N ∈ N such that K ⊆ [−N,N ],
and for every l ≥ 2N , and every x ∈ K we have |ρl · x| > N . The action of D∞ on
C0(R) is given by:

(g · f)(x) = f(g−1 · x).

The multiplier algebra of C(R) is the commutative algebra Cb(R) ⊕ Cb(R). Let
ϕ : C0(R) → Cb(R)⊕ Cb(R) be the ∗-homomorphism given by

ϕ(f)(x) = (f(x), f(x)).

Note that ϕ is D∞-equivariant:

ϕ(g · f)(x) =((g · f)(x), (g · f)(x))
=(f(g−1 · x), f(g−1 · x))
=π(g)(f(g−1 · x), f(g−1 · x))
=(g · ϕ(f))(x).

To see that ϕ(C0(R)) · C(R) is norm-dense in C(R), use the fact that C0(R) has an
approximate unit.
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As explained in the previous section, to show that the assembly map (2.1) is
an isomorphism it is enough to construct elements β ∈ ED∞(C, C(R)) and α ∈
ED∞(C(R),C) satisfying α ◦ β = 1 ∈ ED∞(C,C).

3.1 The element β

Let C : R → Cliff(R) = C ⊕ C be the inclusion given by C(x) = (x,−x). Since
C(x) is a self-adjoint element of Cliff(R) it makes sense to consider its continuous
functional calculus. Recall the definition of the C∗-algebra S from Section 2 and
endow it with the trivial action of D∞. For t ≥ 1, let βt : S → C(R) be the
∗-homomorphism given by

βt(f)(x) = f(t−1C(x)) = (f(t−1x), f(−t−1x)).

Lemma 7. The asymptotic morphism β = {βt}t≥1 is asymptotically D∞-equivariant.

Proof. Since the action of D∞ on S is trivial, we have to show that

lim
t→∞

∥βt(f)− g · βt(f)∥C(R) = 0 (3.1)

for every f ∈ S and g ∈ D∞. Let us begin with g = ρ. For f ∈ S we have:

∥βt(f)− ρ · βt(f)∥C(R) = sup
x∈R

∥βt(f)(x)− π(ρ)(βt(f)(ρ
−1 · x))∥Cliff(R)

= sup
x∈R

∥F (t−1x)− F (t−1(x+ 1))∥Cliff(R)

where F ∈ C(R) is given by F (x) = (f(x), f(−x)). Let ϵ > 0. Since F is uniformly
continuous, then there exists δ > 0 such that

|t−1| = |t−1x− (t−1(x+ 1))| < δ ⇒ ∥F (t−1x)− F (t−1(x+ 1))∥ < ϵ

for every x ∈ R. This implies that

lim
t→∞

∥βt(f)− ρ · βt(f)∥C(R) = 0.

For the case g = σ we have:

βt(f)(x)− (σ · βt(f))(x) = βt(f)(x)− π(σ)(βt(f)(σ
−1 · x))

= (f(t−1x), f(−t−1x))− π(σ)(f(−t−1x), f(t−1x))

= 0

This shows that ∥βt(f) − σ · βt(f)∥C(R) = 0. Since D∞ is generated by ρ and σ, it
follows that (3.1) holds for all g ∈ D∞.
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3.2 The element α

Let H be the graded Hilbert space L2(R,Cliff(R)) = L2(R)⊕L2(R). The group D∞
acts on H by

(g · F )(x) = π(g)(F (g−1 · x))

for g ∈ D∞, F ∈ H and x ∈ R.
Letting B(H) be the C∗-algebra of bounded operators on H, we have an induced

D∞-action on B(H) given by

(g · T )(F ) = g · (T (g−1 · F )),

for g ∈ D∞, T ∈ B(H) and F ∈ H.
Let S(R) ⊆ H be the space of Schwartz functions. The Dirac operator D is an

unbounded operator on H = L2(R)⊕ L2(R) with domain S(R) defined by

D(F1, F2) =

(︃
dF2

dx
,−dF1

dx

)︃
for all F = (F1, F2) ∈ S(R). By [8, Lemma 1.8], D is essentially self-adjoint and
we can apply functional calculus: ∀f ∈ S, f(D) ∈ B(H). Moreover, for F ∈ C(R)
we have f(D)MF ∈ K(H), where MF ∈ B(H) is the multiplication operator and
K(H) ⊂ B(H) is the subalgebra of compact operators.

For F ∈ C(R) and t ∈ [1,∞), let Ft ∈ C(R) be the function Ft(x) = F (t−1x). By
[8, Proposition 1.5], there exists, up to equivalence, a unique asymptotic morphism
α : S ˆ︁⊗C(R) ‧‧➡ K(H) defined as follows on the elementary tensors:

αt(f ˆ︁⊗F ) = f(t−1D)MFt .

Let us define a continuous family of D∞-actions on R as follows: for every s ≥ 0 put
ρ ·s x = x− s and σ ·s x = −x. The induced action on H is

(g ·s F )(x) = π(g)(F (g−1 ·s x)).

for F ∈ H and g ∈ D∞. This defines a continuous family of D∞-actions on K(H).

Proposition 8. The asymptotic morphism α is equivariant with respect to the family
of actions defined above i.e. it verifies

lim
t→∞

∥αt(f ˆ︁⊗g · F )− g ·t (αt(f ˆ︁⊗F ))∥ = 0

for every g ∈ D∞, f ∈ S and F ∈ C(R).

Proof. We will actually show that ∥αt(f ˆ︁⊗g · F ) − g ·t (αt(f ˆ︁⊗F ))∥ = 0 for all g, f
and F . Since D∞ is generated by σ and ρ, it suffices to prove that this holds for
these two elements.
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Let us begin with the case g = ρ. Fix t ∈ [1,∞), f ∈ S and F ∈ C(R). We will
show that αt(f ˆ︁⊗(ρ · F )) = ρ ·t (αt(f ˆ︁⊗F )). On one hand we have:

αt(f ˆ︁⊗(ρ · F )) = f(t−1D)M(ρ·F )t

On the other hand, since D is translation invariant, we have:

ρ ·t (αt(f ˆ︁⊗F )) = ρ ·t (f(t−1D)MFt)

= (ρ ·t f(t−1D))(ρ ·t MFt)

= f(t−1D)(ρ ·t MFt)

We claim that M(ρ·F )t = ρ ·t MFt . Indeed, for G ∈ H and x ∈ R, we have:

M(ρ·F )t(G)(x) = (ρ · F )t(x)G(x) = (ρ · F )(t−1x)G(x) = F (t−1x+ 1)G(x)

(ρ ·t MFt)(G)(x) = (ρ ·t (MFt(ρ
−1 ·t G)))(x)

= (MFt(ρ
−1 ·t G))(x+ t)

= Ft(x+ t)(ρ−1 ·t G)(x+ t)

= F (t−1x+ 1)G(x)

This proves our claim and finishes the case g = ρ.
Let us now consider the case g = σ. On one hand we have:

αt(f ˆ︁⊗σ · F ) = f(t−1D)M(σ·F )t

On the other, we have:

σ ·t (αt(f ˆ︁⊗F )) = σ ·t (f(t−1D)MFt)

= (σ ·t f(t−1D))(σ ·t MFt)

We claim that M(σ·F )t = σ ·t MFt . Indeed, for G ∈ H and x ∈ R, we have:

(σ ·t MFt)(G)(x) = σ ·t (MFt(σ
−1 ·t G))(x)

= π(σ)
(︁
MFt(σ

−1 ·t G)(σ−1 ·t x)
)︁

= π(σ)
(︁
Ft(−x)(σ−1 ·t G)(−x)

)︁
= π(σ)

(︁
F (−t−1x)π(σ−1) (G(x))

)︁
= [π(σ)

(︁
F (−t−1x)

)︁
]G(x)

M(σ·F )t(G)(x) = (σ · F )t(x)G(x)

= (σ · F )(t−1x)G(x)

= [π(σ)
(︁
F (−t−1x)

)︁
]G(x)
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Let us now show that σ ·t f(t−1D) = f(t−1D). Since S is generated by u = e−x2

and v = xe−x2
, it suffices to consider the cases f = u and f = v. In the case f = u,

u(t−1D) is convolution by w = e−
1
4
t−2∥x∥2 . Unravelling the definitions and using

that w is an even function, one shows that σ ·t u(t−1D) = u(t−1D). In the case
f = v, we have:

σ ·t v(t−1D) = σ ·t [t−1Du(t−1D)]

= (σ ·t t−1D)(σ ·t u(t−1D))

= (σ ·t t−1D)u(t−1D)

It is easily verified from the definitions that σ ·t t−1D = t−1D.

Proposition 9. Let α : S ˆ︁⊗C(R) ‧‧➡ K(H) and β : S ‧‧➡ C(R) be the asymptotic
morphisms defined above. Then we have α ◦ β = 1 ∈ ED∞(C,C).

Proof. Let s ∈ [0, 1] and let Cs(R) be the C∗-algebra C(R) endowed with the D∞-
action ·s. Consider the C∗-algebra C[0,1](R) := C([0, 1], C(R)) with the D∞-action

(g · h)(s) := g ·s h(s)

for g ∈ D∞, h ∈ C[0,1](R) and s ∈ [0, 1]. Define Ks(H) and K[0,1](H) in a similar
fashion — using the scaled action ·s.

With this notation, we have to prove that the composition

C β−→ C1(R)
α−→ C

is the identity in ED∞(C,C).
Upon tensoring with C[0, 1], the asymptotic morphism α : S ˆ︁⊗C(R) ‧‧➡ K(H)

induces an asymptotic morphism

α : S ˆ︁⊗C[0,1](R) ‧‧➡ K[0,1](H)

given by αt(f ⊗ h)(s) = αt(f ⊗ h(s)). With an argument similar to the one used in
Proposition 8 it can be shown that α determines a class in ED∞(C[0,1](R), C[0, 1]).

Similarly, β : S ‧‧➡ C(R) induces an asymptotic morphism

β : S ‧‧➡ C[0,1](R)

upon tensoring with C[0, 1] and then composing with the inclusion S ⊆ S[0, 1] as
constant functions. The same arguments used in Lemma 7 show that β is asymp-
totically equivariant. Consider the following commutative diagram of equivariant
E-theory morphisms, where εs denotes the morphism induced by the evaluation at
s:

C β →→ C[0,1](R)

εs
↓↓

α →→ C[0, 1]

εs

↓↓
C β →→ Cs(R) α →→ C
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Note that the asymptotic morphisms α and β still define classes in equivariant
E-theory when we replace C(R) with Cs(R). Since εs is an equivariant homotopy
equivalence, it induces an isomorphism on equivariant E-theory. Moreover, the
E-theory class of εs does not depend on s since any εs is a right inverse to the
inclusion C ↪→ C[0, 1] as constant functions. It follows that the E-theory class of
the composite

C β−→ Cs(R)
α−→ C

does not depend on s. We will show that this is the identity for s = 0. Note that in
this case, each βt is an equivariant ∗-homomorphism. It follows that the equivari-
ant asymptotic morphism β is equivariantly homotopy equivalent to the equivariant
∗-homomorphism β1. Using this fact, it is enough to compute the following compo-
sition:

C β1−→ C0(R)
α−→ C

By [8, Theorem 1.17] this composite is asymptotically equivalent to the asymptotic
morphism γ : S ‧‧➡ K(H) given by γt(f) = f(t−1B), where B = C + D is an
unbounded operator on H with domain S(R). Note that γ is asymptotically equiv-
ariant since it is asymptotically equivalent to the asymptotically equivariant α ◦ β1.
Since each γt is a ∗-homomorphism, the asymptotic morphism γ is homotopy equiv-
alent to the ∗-homomorphism γ1. We will show that the class of γ1 in equivariant
E-theory is the classs of the identity.

By [9, Corollary 15], there is an orthonormal eigenbasis of B consisting of
Schwartz-class functions. Moreover, ker(B) has dimension 1 and the nonzero eigen-
values of B are ±

√
2n for n ≥ 1. Let p ∈ B(H) be the projection onto the kernel of

B and consider the following homotopy H : S → C([0, 1],K(H)):

H(f, s) =

{︄
f(s−1B) for s > 0,

f(0)p for s = 0.

To prove that H is continuous at s = 0, use that f vanishes at ∞ and that |λ| ≥
√
2

for every nonzero eigenvalue λ of B. This H is an homotopy between γ1 and a
projection onto a 1-dimensional subspace, that represents the identity in E-theory.

As a corollary we obtain:

Theorem 10. The Baum-Connes conjecture with coefficients holds for the infinite
dihedral group. That is, the assembly map µr : Ktop(D∞, A) → K(C∗

r (D∞, A)) is
an isomorphism for every separable D∞-C∗-algebra A.

By [13], the assembly map of the above theorem can be identified with the one
defined by Davis and Lück in [3]. For A = C, the left hand side of the Davis-
Lück assembly was computed in [15]. We have K0(C

∗
r (D∞)) ∼= Z ⊕ Z ⊕ Z and

K1(C
∗
r (D∞)) = 0.
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