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ABSTRACT: It is a fact that engineering properties of the building materials are particularly difficult to model analytically. 

Given the importance of their values in any application, it is critical to have an estimation of every engineering parameter 

that is required. This two-part paper will present a dataset containing three engineering properties of some new materials 

obtained through recycling waste from petroleum industry and from coal-based power. The second part of the paper will 

present the application of several Machine Learning algorithms to the dataset mentioned above. The performance of each 

model was assessed and discussed. It was found that Bagging (with a Decision Tree based algorithm) and XGBoost algorithm 

have the best performance. 
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1.INTRODUCTION 

 
Machine Learning algorithms have significant 

advantages over conventional approaches in 

predicting properties of cement-based materials 

[1], compressive strength of self-compacting 

concrete [2], compressive strength of fly ash-

based geopolymer [3], etc. As the algorithms of 

choice, it is commonly agreed that ensemble 

methods (especially based on Decision Tree 

algorithm) perform better than standalone 

algorithms [4]. Hybrid models were also 

reported, such as a SVM – Genetic Algorithm 

[5]. 

The main Machine Learning algorithms deemed 

suitable for the dataset considered in this study 

were described in the first part of this paper. In 

the second part, the algorithms will be 

benchmarked on the mechanical properties 

dataset.  

2.PRELIMINARY ANALYSIS OF 

THE DATASET 

The dataset consisted of 207 lines with the 

following structure:  
- Features:  

o Clay percentage 

o Ash percentage 

o Waste drilling fluid percentage 

(WDF) 

o Temperature (T) 

- Targets: 

o Compressive strength (CS) 

o Density (D) 

o Pore density (PD) 
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Figure 1. Histograms (ten bins) of the dataset variables. 

 

No missing values or outliers were present in 

the dataset due to the collecting procedure 

requirements. The main statistic parameters of 

the data set are presented in Table 1. 

Table 1. Main statistic parameters of each variable in the dataset 
 Clay Ash WDF T CS D PD 

count 207.000000 207.000000 207.000000 207.000000 207.000000 207.000000 207.000000 

mean 51.181159 26.681159 22.137681 1000.000000 19.762126 1.598357 36.640531 

std 26.659937 18.081927 23.407101 24.554279 8.150619 0.166635 5.990664 

min 0.000000 0.000000 0.000000 970.000000 3.120000 1.260000 24.720000 

25% 32.000000 10.000000 0.000000 970.000000 14.220000 1.475000 31.955000 

50% 50.000000 25.000000 18.000000 1000.000000 20.050000 1.610000 35.790000 

75% 75.000000 40.000000 35.000000 1030.000000 25.315000 1.730000 41.335000 

In order to analyse the mutual influences and 

cross-correlations between various variables in 

the dataset a cross-correlation matrix has been 

determined (Figure 2). It can be noticed that the 

compressive strength has a distribution closed 

to the normal while density and pore density are 

somewhat skewed to the left and to the right 

respectively. Several clear trends can be 

identified (increasing the clay content results in 

a higher density and compressive strength and a 

lower pore density; increasing the ash content 

results in a higher pore density and in a lower 

density while the effect on compressive strength 

is not well defined). The WDF variable deserves 

a special comment: from Figure 1 it can be 

noticed that most of the WDF content values 

were les than 10% (WDF content reduced 

dramatically the compressive strength, so 

during the experiments it was found that some 

specimens did not comply with the minimum 

requirements to undergo compressive strength, 

density and pore density measurements). It is 

therefore difficult to assess the effect of WDF 

on compressive strength, density and pore 

density (however a slight trend can be observed, 

in the sense that increasing the WDF content 

results in a lower compressive strength and 

higher pore density). The effect of the 

temperature cannot be assessed from these plots 
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since only three values were used in the 

experiments. 

 

 
Figure 1. Cross-correlation plots for all variables in the dataset 

 

3.MACHINE LEARNING MODEL 

EXPERIMENTS 

The dataset described in the previous 

section will be used for training and test with 

several Machine Learning algorithms 

implemented in scikit-learn library. The metrics 

used to compare the results of the algorithms 

against each other are mean squared error, mean 

absolute error and mean absolute percentage 

error. The features values were scaled to [0, 1] 

as most Machine Learning algorithms work 

better with scaled values. Since the number of 

features is already small, it is out of the question 

to perform feature selection. It is however 

interesting to establish if the temperature has 

any effect on the results since it has a very small 

number of values.  

3.1.Support Vector Regressor 

The scikit-learn implementation of the 

Support Vector Regressor requires several 

important parameters. The first parameter to be 

discussed is kernel, for which the value linear 

has been used in this paper. For the parameter C 

the default value 1 was used. Several tests were 

performed to establish the influence of 𝜖. It was 

found that no significant difference occurs when 

varying 𝜖 from 0.1 to 1E-4. 

The metric values for Support Vector 

Regressor are presented in Table 2. 

Table 2. Support Vector Regressor. Metric values 
 Temperature feature included Temperature feature not included 

Target  Mae Mse mape Mae Mse mape 
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Compressive 

Strength 
3.229188 17.174875 0.162177 3.529106 20.507019 0.181709 

Density 0.043850 0.002582 0.027289 0.048401 0.003106 0.030051 

Pore Density 1.280040 2.898557 0.034724 1.955872 5.702066 0.053639 

3.2.Decision Tree  

Although Decision Tree is a more robust 

algorithm and it is relatively insensitive to features 

scale. However, the scaling from previous algorithm 

was preserved. An important parameter of the 

Decision Tree algorithm is max_depth, which 

controls the maximum depth of the tree. The metrics 

values for the max_depth parameter value 3 are 

presented in Table 3.a. However, it was found that 

the default value for the max_depth parameter 

used by the scikit-learn implementation (None) 

results in significantly better performance, 

especially for compressive strength. The metrics 

values for max_depth = None are presented in 

Table 3.b. 

 

Table 3.a. Decision Tree Regressor metrics values for max_depth = 3 

 Temperature feature included Temperature feature not included 

Target Mae Mse mape Mae Mse mape 

Compressive 

Strength 
2.938462 13.816518 0.184132 2.746735 10.524323 0.179425 

Density 0.041697 0.003522 0.026806 0.041697 0.003522 0.026806 

Pore Density 1.722098 5.310888 0.049134 1.722098 5.310888 0.049134 

 

Table 3.b. Decision Tree Regressor metrics values for max_depth = None 

 Temperature feature included Temperature feature not included 

Target Mae Mse mape Mae Mse mape 

Compressive 

Strength 
2.024524 8.692321 0.105466 1.859563 6.469421 0.110321 

Density 0.017381 0.000550 0.011189 0.022698 0.000928 0.013847 

Pore Density 1.261190 2.758826 0.035792 1.846905 5.731231 0.051811 

3.3.Linear Regression 

The most basic algorithm, Linear Regression 

results in the metrics values presented in the 

Table 4. The results are comparable to those 

obtained by Support Vector Regressor and 

considerably worse than those provided by 

Decision Tree algorithm. 

 

Table 4. Linear Regression metrics values 

 Temperature feature included Temperature feature not included 

Target Mae Mse mape Mae Mse mape 

Compressive 

Strength 
2.916663 12.271482 0.169075 2.940396 12.726532 0.188403 

Density 0.041298 0.002305 0.026351 0.044555 0.002638 0.028270 

Pore Density 1.377503 3.445922 0.037910 1.553998 4.827806 0.043454 
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3.4.Linear Regression with L1 regularization 

(Lasso) 

The parameter that controls the amount of 

regularization is alpha (higher the value, 

stronger the regularization). The results for 

Lasso regression are presented in Table 5.a for 

the default value of the L1 regularization 

parameter. 

 

 

 

Table 5.a Lasso Regression with the default value of alpha=1.0 

 Temperature feature included Temperature feature not included 

Target  Mae Mse mape Mae Mse mape 

Compressive 

Strength 
4.093048 26.925335 0.215454 4.093048 26.925335 0.215454 

Density 0.138429 0.025205 0.086626 0.138429 0.025205 0.086626 

Pore Density 3.770655 20.308864 0.102570 3.770655 20.308864 0.102570 

Lasso regression produces the same values of 

the metrics no matter if temperature is included 

in the features or not. Reducing the amount of 

regularization by setting the regularization 

parameter value 0.1, the metrics will take the 

values presented in Table 5.b. 

Table 5.b Lasso Regression with the value of alpha=0.1 

 Temperature feature included Temperature feature not included 

Target  Mae Mse mape Mae Mse mape 

Compressive 

Strength 
2.849642 12.345342 0.164365 2.949861 13.071669 0.177216 

Density 0.138429 0.025205 0.086626 0.138429 0.025205 0.086626 

Pore Density 1.435464 3.751327 0.039345 1.622918 5.288863 0.044809 

From analyzing the results presented in Tables 

5.a and 5.b it can be noticed that by decreasing 

regularization the effect of temperature starts to 

be noticed. This means that a strong 

regularization will remove some of the features, 

in this case temperature. 

 

3.5.Linear Regression with L2 regularization 

(Ridge)  

Similar to the Lasso regression, Ridge 

regression controls the amount of regularization  

through alpha parameter. Unlike Lasso 

regression, all features are considered no matter 

what the value of the L2 regularization 

parameter is but increasing it will reduce the 

influence of some features. With the default 

value of the L2 hyperparameter, the metrics 

values are presented in Table 6.a. 
 

Table 6.a. Ridge Regression with the default value of alpha=1.0 

 Temperature feature included Temperature feature not included 

Target  Mae Mse mape Mae Mse mape 
Compressive 
Strength 2.879031 12.421199 0.165275 2.961354 12.993707 0.180775 

Density 0.042258 0.002440 0.027013 0.045111 0.002796 0.028706 
Pore Density 1.409173 3.588732 0.038669 1.583756 5.062063 0.043972 

 

In the next test, the amount of L2 regularization 

will be reduced by setting the L2 regularization 

hyperparameter to 0.1. The results are presented 

in Table 6.b. It can be noticed that no significant 

difference exists between the L2 regularization 

hyperparameter values 1.0 and 0.1. 
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Table 6.b. Ridge Regression with the default value of alpha=0.1 
 Temperature feature included Temperature feature not included 

Target  Mae Mse mape Mae Mse mape 

Compressive 

Strength 
2.906201 12.276718 0.167648 2.942531 12.744227 0.187484 

Density 0.041372 0.002315 0.026403 0.044596 0.002651 0.028304 

Pore Density 1.379930 3.455920 0.037963 1.556642 4.847866 0.043496 

3.6.AdaBoost.  

The scikit-learn implementation of the AdaBoost 

algorithm [7] starts by fitting a regressor on the 

original dataset and then continuing fitting copies of 

the regressor on the same dataset with weights 

adjusted according to the error of the current 

prediction. In such way, subsequent regressors will 

focus on instances where prediction error is higher. 

Table 7. AdaBoost Regression metrics values 

 Temperature feature included Temperature feature not included 

Target  Mae Mse mape Mae Mse mape 

Compressive 

Strength 
2.148098 6.930690 0.121905 2.086592 6.552493 0.120948 

Density 0.026003 0.000982 0.016385 0.028779 0.001202 0.018035 

Pore Density 1.439784 3.196552 0.040819 1.626779 4.672220 0.046310 

 

The default regressor used in the 

implementation of AdaBoost is 

DecisionTreeRegressor with the default value 

of the max_depth parameter 3. Experiments 

with max_depth=None showed a small 

improvement in the values of the metrics. 

 

3.7.Bagging Regressor 

Bagging – short for bootstrap aggregating – 

consists of using the same training algorithm for 

every predictor but training them on random 

subsets of the training set. The random sampling 

of the dataset can be performed with 

replacement, in which case the method is called 

bagging or without replacement and the method 

is called pasting. Bagging Regressor is typically 

used as a way to reduce the variance of a black-

box estimator such as a Decision Tree, by 

introducing randomization into its construction 

procedure and then making an ensemble out of 

it.  

The values of the metric obtained by employing 

a Bagging Regressor are presented in Table 8.a. 

 

Table 8.a. Bagging Regressor metrics values. Out-of-bag evaluation set to False 

 Temperature feature included Temperature feature not included 

Target Mae Mse mape Mae Mse mape 

Compressive 

Strength 
1.332946 2.906534 0.083195 1.835834 5.142862 0.113702 

Density 0.019450 0.000863 0.012392 0.023978 0.001152 0.014820 

Pore Density 1.124883 2.249006 0.032390 1.583572 4.726846 0.044652 

Further improvement can be achieved by setting 

the oob_score parameter to True. This forces 

the predictor to be evaluated on the set of 

instances that it never sees (details in [6]) 
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Table 8.b. Bagging Regressor metrics values. Out-of-bag evaluation set to True 

 Temperature feature included Temperature feature not included 

Target Mae Mse mape Mae Mse mape 

Compressive 

Strength 
1.238918 2.564622 0.078041 1.811776 5.210920 0.111734 

Density 0.017988 0.000703 0.011463 0.023203 0.001052 0.014295 

Pore Density 1.106171 2.182096 0.031803 1.635455 4.880250 0.046006 

The Bagging Regressor with Out-of-bag 

evaluation set to True produces by far the best 

results. However, overfitting can be noticed if 

the metrics for the train set are analyzed, as 

shown in Table 8.c 

 

Table 8.c. Bagging Regressor metrics for the train set 
 Temperature feature included 

Target Mae Mse mape 

Compressive 

Strength 
0.664283 0.825856 0.045133 

Density 0.009201 0.000145 0.005825 

Pore Density 0.562173 0.534737 0.015413 

A comparison between predictions and targets 

for the test set is presented in Figure 3.a. 

 

Figure 3.a. Bagging Regressor – comparison between predictions and targets for the test set 

 

In contrast, the results for the train set are 

presented in Figure 3.b. Comparing Figure 3.a 

with Figure 3.b it is obvious that the model 

overfits significantly. 



Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. /2022 

44 

 

 
Figure 3.b. Bagging Regressor – comparison between predictions and targets for the train set 

3.8.Random Forests Regressor 

Table 9. Random Forests Regressor metrics values. Out-of-bag evaluation set to True 

 Temperature feature included Temperature feature not included 

Target Mae Mse mape Mae Mse mape 

Compressive 

Strength 
1.601407 4.190459 0.096428 1.827735 5.221197 0.109622 

Density 0.021698 0.000875 0.013775 0.024935 0.001105 0.015587 

Pore Density 1.296026 3.005651 0.037258 1.572180 4.644227 0.044411 

Random Forests family algorithms can 

measure the relative importance of each 

feature, as presented in Table 10. 

 

 

 

 

Table 10. Relative importance of the features as determined by the Random Forests Regressor 

 Compressive 

Strength 
Density Pore Density 

Clay 0.825993 0.807865 0.872886 

Ash 0.055522 0.170469 0.066074 

WDF 0.088666 0.013287 0.014213 

Temperature 0.029820 0.008380 0.046826 

3.9.Gradient Boosting Regressor 

This is another boosting algorithm from the 

family of Ensemble learning.  

 

 

Table 11. Gradient Boosting Regressor metrics 

 Temperature feature included Temperature feature not included 

Target  Mae Mse mape Mae Mse mape 
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Compressive 

Strength 
1.780641 5.696110 0.100393 2.033219 7.401983 0.116788 

Density 0.015483 0.000434 0.009975 0.020615 0.000783 0.012539 

Pore Density 1.296582 2.923086 0.036860 1.784169 5.671942 0.050087 

From Tables 11 and 8 it can be noticed that the 

boosting algorithm performs almost as good as 

the bagging algorithm, which demonstrates one 

more time the efficiency of ensemble methods. 

 

3.10.Voting Regressor 

The Voting Regressor takes the arithmetic average 

between a number of estimators provided as 

arguments.  

In this example, a number of four estimators 

(Gradient Boosting, Random Forest, Linear 

Regression and AdaBoosting) will be considered. 

 

Table 12. Voting Regressor 

 Temperature feature included Temperature feature not included 

Target  Mae Mse mape Mae Mse mape 

Compressive 

Strength 
1.654241 4.280269 0.096342 2.006209 5.458830 0.121971 

Density 0.022847 0.000707 0.014479 0.025979 0.001038 0.016098 

Pore Density 1.129023 2.229244 0.032356 1.560110 4.381273 0.044062 

 

4.CONCLUSIONS 
 

The common Machine Learning algorithms 

tested on the dataset produced different results, 

from worst (Linear Regression) to the best 

performing algorithm Bagging Regressor, 

which demonstrates the power of Ensemble 

Learning methods. However, due to the small 

volume of the dataset, it is not possible to avoid 

overfitting, even though the dataset was 

carefully collected and pre-processed. By using 

the Random Forest Algorithm, it was possible 

to quantify the relative influence of the features 

to the target values. It was found that the Clay 

content influence dominates (with more than 

80%) the other three features for all targets. The 

temperature influence is the least significant 

(less than 5%) for all targets. The waste drilling 

fluid component influences mostly the 

compressive strength and less density and pore 

density. 

It is expected that a higher volume dataset will 

produce better results and will reduce 

overfitting. Another possible way to increase 

the performance of the models is to add more 

features to the dataset. Regarding the 

performance of different algorithms, it can be 

clearly noticed that Linear Regression 

performed the worst. L1 and L2 regularization 

did not improve the standard Linear Regression 

(this is not surprising as the number of features 

of this dataset is anyway small). A comparison 

of the algorithm performance is presented in 

Figure 4.a (mean absolute error criteria) and 

Figure 4.b. (mean percentage error criteria). 
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Figure 4.a. Algorithm performance (mae criteria) Figure 4b. Algorithm performance (mape criteria) 

 

The study presented in this paper attempted to 

establish if the temperature feature does 

influence significantly the performance of the 

model. The dataset contains only three distinct 

values of the temperature, which, intuitively, is 

not expected to bring much information. 

Therefore, the performance metrics were 

determined in two cases, with temperature 

included as the fourth feature and without 

temperature (the feature number was limited in 

this case to three). The influence of the 

temperature feature is almost insignificant, 

which was expected due to the very small 

number of values. A better approach could have 

been splitting the dataset into three subsets, one 

for each value of the temperature. In this case, 

the advantage or removing a feature is offset by 

reducing significantly the datasets volume. 
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