
Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 1/2025

9

USING THE FILL ALGORITHM TO SOLVE RECURSIVE INFORMATICS
PROBLEMS: CASE STUDIES AND OPTIMIZATIONS

Adrian RUNCEANU, "Constantin Brâncuși" University of Târgu Jiu, ROMANIA,

adrian.runceanu@e-ucb.ro
Mihaela-Ana RUNCEANU, "Ecaterina Teodoroiu" High College, Târgu Jiu,

ROMANIA

ABSTRACT: The FILL algorithm which functions as a flood-fill technique in image processing
serves as an efficient solution to solve various informatics problems related to matrix traversal,
component counting and recursive region detection. The paper investigates FILL algorithm usage for
three fundamental problems: connected component (continent) counting and value aggregation over
regions and zone analysis in maps. Such problems commonly occur on competitive informatics
platforms including pbinfo.ro. The paper conducts extensive case analysis alongside experimental
measurements to demonstrate the effectiveness of recursive flood-fill methods while presenting
timing results between DFS recursion and BFS iteration and recommending performance
enhancements through pre-check marking and scanline approaches and Union-Find labeling
techniques. The paper supports educational value of these problems because they help teach recursive
concepts and algorithmic thinking.

KEY WORDS: FILL algorithm, flood-fill, recursive DFS, algorithmic recursion, problem solving
in C++.

1. INTRODUCTION

Recursive programming serves as a basic
computing technique which allows functions
to invoke themselves to divide problems into
smaller sub-problems for solution. This paper
evaluates recursive methodology through
theoretical analysis while focusing on fill
algorithms in computational problem
resolution. The approach known as recursion
enables computers to tackle problems through
solutions of identical smaller problems to find
final answers. According to Niklaus Wirth
"The power of recursion evidently lies in the
possibility of defining an infinite set of objects
by a finite statement." A recursive program of
finite size enables the description of an
unlimited number of computations without

needing explicit repetition statements [1].
Recursive solutions use self-referential
mechanisms to achieve repetition which
generates elegant problem solutions for
specific types of problems. Recursive
functionality exists in all current programming
languages because functions can invoke
themselves from their own code. The
programming language Clojure depends
entirely on recursive programming because it
lacks built-in looping constructs. Despite the
apparent restriction to recursion only these
languages demonstrate Turing completeness
according to computability theory thus
matching the power of imperative languages
with while and for loops [1].
A recursive function needs three crucial
components to work effectively. To achieve
recursion the function needs to invoke itself

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 1/2025

10

with different input values. The function
requires a base case definition that allows it to
return values without initiating additional
recursive operations. The base case must be
accessible after several recursive steps [2]. A
recursive function requires specific elements
including a proper stopping condition to avoid
infinite recursion which leads to stack
overflow errors that cause program crashes.
The creation of proper termination conditions
stands as a vital requirement for designing
recursive programs. Developers need to study
the problem domain to determine how their
function can produce results through direct
recursion instead of additional calls [2]. The
design approach leads to both correct and
efficient outcomes.
2. TYPES OF RECURSIONS

(TNR 12 pt)
Primitive recursive functions serve as an
essential group of total computable functions
according to computability theory. Programs
using primitive recursive functions operate
through loops with defined maximum iteration
counts that establish before the loop starts thus
resembling “for" loops with defined counts [5].
The characteristic properties of primitive
recursive functions make them especially
useful for studying and building recursive
algorithms. The fundamental operations of
number theory and broader mathematics
including addition and division and factorial
calculation and the function which returns the
nth prime number belong to the primitive
recursive set. A computable function becomes
primitive recursive when its time complexity
remains below a primitive recursive function
of input size [5].
Structural recursion functions as a recursive
method which parallels the function of
structural induction to mathematical induction
[4]. Data structures such as formulas, lists and
trees are best handled by this particular
method. The base cases in structural recursion
manage basic structures and recursive rules
explain the handling of complex structures.
The empty list can serve as the base case while
recursive rules enable processing the head of
the list and executing recursive calls on the tail
[3]. List length calculation and list

concatenation demonstrate structural recursion
concepts through their implementation.

2.1. Standard Recursion
Standard recursive functions contain internal
recursive calls which perform operations in
addition to the call. The traditional factorial
calculation performs multiplication between
the current number value and the factorial
outcome from the recursive function.
// C++
#include <iostream>
using namespace std;

 int factorial(int n) {
 // Base case
 if (n == 0 || n == 1)
 return 1;
 else
 // Recursive call
 return n * factorial(n - 1);
}
int main () {
 int number;
 cout << “Enter a number: ";
 cin >> number;
 cout << "Factorial of " << number << " is "
<< factorial(number) << endl;
 return 0;
}
When we execute factorial(5) it produces the
result 5! = 120 because of the implemented
calculation of 5 × 4 × 3 × 2 × 1 [2]. The
function includes a direct return value from the
base case when n equals 0 or 1 but uses the
recursive case to solve the problem by
multiplying n with the factorial result of (n-1).

2.2. Tail Recursion
Tail recursion stands as a particular form of
recursion that executes its recursive call as the
last operation in the function before returning
its result. A method demonstrates tail recursion
when its last executed statement consists of
another call to the same method [4]. Tail call
optimization allows compilers and interpreters
to enhance the recursive process because it
eliminates the possibility of deep recursion
stack overflow.
A tail recursive method requires it’s called
method to produce concrete results such as

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 1/2025

11

numbers or strings because void results are not
acceptable [4]. Even though the recursive
operation needs to be the last step executed by
the method it does not need to occupy the last
line in the code since it can reside inside
control structures provided it represents the
last executed operation.
Java and C++ programming languages enable
tail recursion yet their optimization abilities
differ based on the implementation. The
application of recursion delivers more natural
solutions than iterative constructs for
particular problem domains although tail-
recursive algorithms can be transformed into
for loops or while loops [4].

2.3. Fill Algorithms: Recursive
Implementation

The graph traversal algorithms of fill
algorithms serve two primary applications in
computer graphics and computational
geometry. Flood fill algorithms serve as a well-
known example to determine bounded areas in
multi-dimensional arrays through their
execution on graph-connected nodes. The
flood fill algorithm demonstrates recursive
problem-solving by visiting each connected
cell in a grid and changing its color or status.
The identification of neighbors for the current
element demands knowledge of their
coordinate positions. When the current
element has the coordinates (i,j) the
neighboring elements will be located at
positions shown in the following image (Table
1 - we analyzed neighbors that exist in both
row and column directions):

Table 1. Identifying the neighbors of the current element at position (i,j)

A recursive solution for a 2D grid would
appear as follows in C++:

// C++
#include <iostream>
#include <vector>
using namespace std;
void flood_fill(vector<vector<int>>& grid,
int x, int y, int old_color, int new_color) {
 // Base cases: out of bounds or not the
target color
FloodFill(grid, x + 1, y, old_color,
new_color); // Right
 flood_fill(grid, x + 1, y, old_color,
new_color); // Right
 flood_fill(grid, x - 1, y, old_color,
new_color); // Left
 flood_fill(grid, x, y + 1, old_color,
new_color); // Down
 flood_fill(grid, x, y - 1, old_color,
new_color); // Up
}

This implementation presents a few important
recursive concepts that include specific
termination conditions (out of bounds or
mismatched target color), cell filling
operations and recursive calls to solve adjacent
cell problems.

3. EFFICIENT
IMPLEMENTATIONS OF THE
FILL ALGORITHM
We present the following three computer
science problems which are available on the
dedicated website pbinfo.ro [16]. The C++
FILL algorithm implementation was used to
solve these problems. The website pbinfo.ro
[15] is an educational platform in Romania that
provides support to students and teachers in
computer science education. The website hosts
an extensive database of programming
problems mainly focused on algorithmic
problems which are organized based on
academic level and topic. A problem

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 1/2025

12

evaluation tool on the website performs
automated evaluation of user submitted code
which provides instant feedback about solution
accuracy and efficiency [19].

3.1. Fill, Map1 and Photo problems
Fill problem (counting continents). The Fill
problem [16] provides an n×m matrix
containing only 0 and 1 elements to represent
a map with land as 1 and water as 0. Two
adjacent land features which share horizontal
or vertical borders belong to the same
continent. The task requires the calculation of
the total number of continents found in the
map. The program fill.cpp performs the
following steps: it reads n, m and the input
matrix; then, for each cell [i,j] that contains 1
(and has not been processed), it increments the
continent counter and calls the recursive
function fill(i,j). The function changes all cells
that are connected to the cell into 1 then resets
them to 0 to prevent double counting of the
same continent. The result is written to the
fill.out file. The example given in [4] presents
the following array.
4 6
1 1 1 1 0 0 1 0
0 0 1 1 0 1 1 0
1 1 1 1 0 0 0 0
0 1 1 0 1 1 1 1
The algorithm detects 3 continents in the given
input data which corresponds to the output
value of 3.
The problem Map1 [17] presents a map
encoded by an N×M matrix with 0
representing water and values ranging from 1
to K representing different countries.
Each country contains multiple departments
which are defined as adjacent cell regions of
the same value value (ignoring diagonal
relationships). The requirement is dual:
- If p=1, the total water area, i.e. the number of
cells with value 0, is required.
- If p=2, it asks for the list of country codes that
have the most departments, in ascending order.
The program map1.cpp starts by reading the
value of p followed by N, M, K and the map
matrix. When p=1 the solution becomes
straightforward because it involves counting
the cells with 0 and displaying the result. When
p=2, the solution method follows the approach
of the Fill problem by initializing a variable to

store the number of departments for each
country code l in the range [1...K]. The
program checks each cell in the matrix for the
value l and performs a recursive call to fill that
position while counting departments locally.
The modified fill function searches for the
value l and transforms all departments into 1
before restoring the original 1 value which
allows z[l] to store the number of departments
discovered for each country. It then evaluates
the values stored in z [1...K] to determine
which countries have achieved the highest
number of departments. For instance, the two
input cases p=1 and p=2 of the example in [5]
demonstrate that with N=5, M=5, K=3 the
answer at p=1 equals 11 (water = 11 cells) and
at p=2 the countries with the most departments
are 1 and 2 (each having 3 departments).
Photo problem (brightest area). The Photo
problem [18] delivers black and white images
through n×m matrices which contain binary
values representing 0 for white dots and 1 for
dark dots. A bright area consists of 0s that form
connected regions which link through both
rows and columns. The task requires users to
locate the brightest section while counting its
total number of bright dots. The foto.cpp
program handles the problem by first reading
n and m values before processing the matrix.
We note that the code uses 0 to represent white
but the counting algorithm uses 1 in some
instances so the program converts 0 to 1 and 1
to 0 (making bright dots "1"). The program
moves through the matrix to find each 1 which
trigger fill function calls that both tag (set to 0)
all connected areas while counting the number
of cells in each area. It tracks down the
maximum size of all components it finds. At
the end, max represents the maximum number
of highlights in an area.

3.2. Test data analysis and performance
The FILL algorithm demonstrates its
functionality through examination of particular
test datasets. The statement contains
appropriate test values that demonstrate the
algorithm's behavior. The FILL problem uses
a 4×6 map with four highlighted continents to
generate result 3 through the recursive
program according to the example in [4]. The
program identifies 11 cells with value 0 in
Map1 during the first example where p equals

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 1/2025

13

1 (5×5) while the same program shows
countries as “1 2” in the second example with
p=2. The 6×6 Photo example produces the
correct result of 5. Multiple artificial test cases
exist for assessing performance. The authors
measured how long it took for the Fill
algorithm to count continents in quadratic
matrices containing random 0/1 distributions
at various sizes.
The Table 2 provides experimental results
showing average times in milliseconds
between recursive DFS and iterative BFS
implementations:

The observed time growth matches the
expected O(n-m) complexity because it
increases directly with N². The tests show that
recursive DFS (DFS) operates slightly faster
but both implementations demonstrate
equivalent performance at small dimension
sizes. Both Map1 and Photo use similar
complexities because the algorithm needs to
scan the entire file; Map1 computes zero
counts at O(n-m) for p=1 and performs flood-
fill component traversal at p=2. The Photo
complexity operates at O(n-m) level because
the maximum region of 0 determines its
performance as shown in the code structure
and supported by theoretical O(n-m) analysis:

Matrix size N×N Recursive DFS time (ms) Iterative BFS time (ms)
10×10 0.05 0.06
20×20 0.15 0.16
30×30 0.31 0.36
50×50 0.78 0.95
70×70 2.02 2.03

100×100 3.71 4.57
Table 2. Flood Fill Algorithm Performance Comparison

4. PRACTICAL APPLICATIONS
Flood-fill and connected-component
algorithms split binary images into their
maximum connected regions. Each connected
component functions as an important segment
which benefits image analysis operations
(including object detection and region-of-
interest extraction) [11]. These concepts serve
as base components for both image
segmentation and morphological analysis [11].
Computer graphics and design: The flood-fill
operation colors closed shapes in vector and
raster graphics by filling polygons. CAD and
GIS systems together with graphics editors
represent some of the applications. The
SCAFF algorithm generates accurate polygon
boundary masks which are useful for machine
learning [2].
Graph segmentation: A flood-fill algorithm
using BFS or DFS works similarly on graph
structures to identify clusters or connected
components. The technique finds applications
in mapping as well as network analysis and
additional fields.
Robotics and Augmented Reality: Filling
algorithms help navigation and augmented

reality systems identify accessible regions and
surfaces in visual data.

5. POSSIBLE OPTIMIZATIONS
FOR THE FILL ALGORITHM
The algorithm employs an explicit data
structure (stack or queue) instead of recursive
calls to perform the traversal [7,8]. Initialize
the stack/queue with the seed pixel, then loop:
pop one pixel, color it, and push its eligible
neighbors. The algorithm avoids stack
overflow and allows control over traversal
order (DFS via stack, BFS via queue) [7].
The algorithm uses a horizontal scan to fill the
seed region which tracks the span's leftmost
and rightmost boundaries. The algorithm
continues to fill by scanning for new seed
pixels within the row above and below the span
[9]. The method requires processing entire
horizontal segments to achieve better
performance with reduced stack/queue entries
and pixel tests. The method produces superior
performance in real-world scenarios due to its
ability to eliminate redundancy [9].
Pre-check before push - Check if a neighbor
pixel requires filling (target color and not yet

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 1/2025

14

visited) before pushing it onto the stack/queue.
Mark it immediately when checking, to
prevent multiple enqueues [10]. The
optimization reduces duplicate stack entries
while simultaneously decreasing the size of the
stack/queue.
Two-pass labeling & Union-Find –
Connected-component labeling can be done in
two raster passes [11]. The first raster pass
temporarily assigns labels to foreground pixels
while keeping track of their label equivalences.
A Union-Find (disjoint set) structure
efficiently maintains these equivalences [11].
The second raster pass replaces each pixel
label with its smallest representative set label.
This technique discovers all connected regions
through an approach without deep recursion.
The execution of region filling and labeling
can be accelerated through parallel processing
along with hardware acceleration. SIMD
intrinsics enable simultaneous processing of
multiple pixels through a single operation
(e.g., flood-filling 128 voxels [12]). The CPU
runs multiple image blocks in parallel using
OpenMP/TBB multi-threading. GPU
implementations that employ optimized block-
based Union-Find operations deliver major
speed improvements [13]. Parallel methods of
fill operations produce significant performance
improvements according to research findings
(fill operations experience approximately 60%
speedup) [14,12].

6. CONCLUSIONS

The fundamental recursive FILL (flood-fill)
method enables region-filling operations yet
becomes inefficient and causes stack
overflows when applied without optimization
[3]. An explicit stack/queue implementation
combined with scanline span techniques and
pre-checks minimizes redundant
computations. Two-pass labeling with Union-
Find handles connected components
efficiently, and parallel SIMD/GPU
implementations yield large speedups.
Research by [14,12] demonstrates how these
optimized methods enhance performance.
These techniques are useful for image
segmentation applications and graphics as well
as related use cases.

REFERENCES

[1] M. F. Sholahuddin and T. Sutabri, “Flood
Fill and Scanline Fill Algorithm Optimization
to Improve Design and Animation
Application Performance,” Int. J. Sci. Profes.
(IJ-ChiProf), vol. 4, no. 2, pp. 531–535,
2025.
[2] Y. He, T. Hu, and D. Zeng, “Scan-Flood
Fill (SCAFF): an Efficient Automatic Precise
Region Filling Algorithm for Complicated
Regions,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition Workshops
(CVPRW), 2019, pp. 761–769.
[3] J. Chen, Q. Yao, H. Sabirin, K. Nonaka,
H. Sankoh, and S. Naito, “An optimized
union-find algorithm for connected
components labeling using GPUs,”
arXiv:1708.08180, 2017.
[4] Atrufulgium, “SIMD flood-fill goes brrr,”
blog post, Aug. 21, 2024. [Online]. Available:
https://atrufulgium.net/2024/08/21/simd-
flood-fill [Accessed: September 2, 2025].
[5] C. A. Bouman, “Connected Component
Analysis,” lecture notes, Purdue University,
Jan. 2025. [Online]. Available:
https://engineering.purdue.edu/~bouman/
[Accessed: September 2, 2025].
[6] Wikipedia contributors, “Flood fill,”
Wikipedia, The Free Encyclopedia. [Online].
Available:
https://en.wikipedia.org/wiki/Flood_fill
[Accessed: September 2, 2025].
[7] Wikipedia contributors, “Recursion,”
Wikipedia, The Free Encyclopedia. [Online].
Available:
https://en.wikipedia.org/wiki/Recursion
[Accessed: September 2, 2025].
[8] Wikipedia contributors, “Connected-
component labeling,” Wikipedia, The Free
Encyclopedia. [Online]. Available:
https://en.wikipedia.org/wiki/Connected-
component_labeling [Accessed: September 2,
2025].
[9] Sholahuddin, F., & Sutabri, T. (2025).
Flood Fill and Scanline Fill Algorithm
Optimization to Improve Design and
Animation Application Performance.
International Journal Scientific and
Professional, 4(2), 531–535.

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 1/2025

15

https://doi.org/10.56988/chiprof.v4i2.89
[Accessed: September 2, 2025].
[10] CVF Open Access, “He et al., CVPRW
2019 Paper,” [Online]. Available:
https://openaccess.thecvf.com/content_CVPR
W_2019/papers/CEFRL/He_Scan-
Flood_FillSCAFF_An_Efficient_Automatic_
Precise_Region_Filling_Algorithm_for_CVP
RW_2019_paper.pdf [Accessed: September 2,
2025].
[11] C. A. Bouman, “Connected Component
Analysis,” lecture notes, Purdue University,
Jan. 2025. [Online]. Available:
https://engineering.purdue.edu/~bouman/ece6
37/notes/pdf/ConnectComp.pdf [Accessed:
September 2, 2025]
[13] Python Imaging Library (PIL),
“ImageDraw and floodfill methods,”
[Online]. Available:
https://pillow.readthedocs.io/ [Accessed:
September 2, 2025].
[14] Chen, J. et al., “Connected Components
Labeling Optimized on GPU,” [Online].

Available: https://arxiv.org/abs/1708.08180
[Accessed: September 2, 2025].
[15] pbinfo.ro, "Probleme de informatică,"
[Online]. Available: https://www.pbinfo.ro.
[Accessed: September 2, 2025].
[16] pbinfo.ro, "Probleme de informatică,"
[Online]. Available:
https://www.pbinfo.ro/probleme/837/fill
[Accessed: September 2, 2025].
[17] pbinfo.ro, "Probleme de informatică,"
[Online]. Available:
https://www.pbinfo.ro/probleme/1496/harta1
[Accessed: September 2, 2025].
[18] pbinfo.ro, "Probleme de informatică,"
[Online]. Available:
https://www.pbinfo.ro/probleme/3220/foto
[Accessed: September 2, 2025].
[19] Adrian Runceanu, Mihaela Runceanu,
„Algoritmi implementaţi în limbajul C++.
Volumul IV - Subprograme”, Editura
Academica Brâncuşi, 2024, ISBN 978-630-
340-016-7

