Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

GRAPHICAL APPLICATION FOR SIMULATING THE OPERATION OF A
MICROPROCESSOR

C.M. Muscai, Babes-Bolyai University, Resita, ROMANIA
M.D. Stroia*(Corresponding author), Babes-Bolyai University, Resita, ROMANIA
C. Hatiegan, Babes-Bolyai University, Resita, ROMANIA
C.Popescu, “Constantin Brdancusi” University of Targu Jiu, ROMANIA

ABSTRACT: This paper presents a software application designed to simulate the basic operation of
a microprocessor for educational purposes. The application employs a custom, easy-to-use assembly
language and provides an integrated environment for both programming and simulation of the
proposed microprocessor. As such, it serves as a valuable didactic tool for introducing students to
assembly programming concepts and to the fundamental principles governing the operation of
microprocessors and microcontrollers. The application was developed using LiveCode, a free
programming language chosen for its capability to compile applications across major operating
systems, including both desktop and mobile platforms. Consequently, the program can be executed
on any computer without requiring external libraries, installation, or elevated user privileges. The
compiled files are fully portable and can run on any system based on Windows, Linux, or macOS.

KEY WORDS: microcontroller, programming, design, education.

1. TECHNOLOGICAL CONTEXT improving programming skills and facilitating
AND MOTIVATION individual learning [1].

Computational thinking has become an
essential requirement, driven by the growing
process of digitalization and the increasing
demand for engineers skilled in programming
microcontrollers and IoT devices, which are
now ubiquitous in both industrial and domestic
environments [2].

Mechatronic applications developed
exclusively through high-level libraries tend to
be large and resource-intensive, consuming
considerable storage and RAM space on
microcontrollers [4] . Although the processing
power of modern devices has improved
dramatically, achieving high energy efficiency
and execution speed still requires a deep and
precise understanding of the underlying
principles and specific characteristics of
mechatronic devices [5].

The rapid evolution of technology, particularly
in the field of mechatronics, has led to an
almost complete abstraction of hardware
components. Within this modern approach,
most functionalities are handled exclusively
through external software libraries, whose
internal mechanisms are often not fully
understood. This abstraction has increased the
difficulty of comprehending the actual
operation of hardware components.

The use of modern educational tools and
development platforms such as Arduino or
Raspberry Pi significantly enhances the overall
quality of teaching, especially in the area of
microcontrollers. Several studies confirm that
this approach benefits students by increasing
motivation and employability while also

178

Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

Currently, several types of code interpreters
and just-in-time compilers are used for
microcontroller programming, each offering
distinct advantages and disadvantages in terms
of memory footprint and execution speed [5].
This paper proposes a new perspective on
microcontroller programming by introducing a
didactic software application designed to be
simple, intuitive, and easy to manage for both
students and educators.

2. SIMULATOR DESIGN AND
IMPLEMENTATION

The Small CPU Emulator was designed as an
educational tool with a clear and minimalist
interface, focusing strictly on functionality
relevant to learning assembly-like
programming concepts.

The design of the minimal processor
implemented in the Small CPU Emulator
application was inspired by the educational
computer Know-how Computer, a concept
created in the 1980s by Wolfgang Back and
Ulrich Rohde. The original system was
conceived as a paper-based learning tool,
where users manually wrote programs and
traced their execution step by step using a pen.
In its initial form, the system featured eight
memory registers and twenty-one possible
lines of code, while the register values were

represented visually using matchsticks placed
within squares, each symbolizing a register [4].
The complete list of instructions implemented
by the virtual processor is presented in Table
1, along with a brief description of each
instruction’s function. The virtual processor
integrated into the application adopts a
simplified structure compared to the original
concept. It consists of two working registers
R1 and R2 and a third register, RM, used for
storing auxiliary data or intermediate states
during program execution.
To preserve simplicity, the instruction set was
minimized as follows:
e 2 arithmetic instructions,
e 2 register testing instructions,
e 3 data transfer instructions (for
register-to-register copying),
e 3 input/output control instructions,
plus:
e NOP (No Operation),
e STP (Stop Program - terminates
execution),
e JMP (Jump — branches to a specified
line).
To better illustrate the execution stages of a
program, the emulator includes the option to
run the virtual processor either in step-by-step
mode or in automatic mode, with an adjustable
execution speed controlled via a graphical
slider interface.

Table 1. The complete list of the virtual CPU instructions

Instruction Type Action

INC Rx Arithmetical | Adds 1 to the value of R1 or R2 register

DEC Rx Arithmetical | Subtracts 1 from the value of R1 or R2 register

NOP Generic No action, just delay

STP Generic Marker for end of the program

JMP xx Control Makes the row xx the next operation to run, unconditional jump

REX Register Swaps the content of the two registers R1 and R2

STO Rx Register Stores the value in R1 or R2 into RM register

LOD Rx Register Restores, loads the value stored in the RM register into R1 or R2

ISZ Rx Comparison | Compares the value stored in R1 or R2 and jumps over the next instruction if
condition is met

ISE Comparison | Compares the values stored in R1 and R2, if they are equal then it jumps over
the next instruction

2.1. Small CPU Emulator in LiveCode

Applications developed in LiveCode are stored
as binary stacks that include both executable
code and all interface objects (such as buttons,

fields, and images) as well as optional
graphical or audio assets.

Internally, each LiveCode project can contain
one or more stacks, each composed of one or

Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

more cards where interface elements are
placed.

These cards can be shown or hidden
dynamically during execution, allowing
transitions, animations, or modular interface

e a secondary stack, “HIpStack”, which
contains the help window accessible
through the main menu.

Each object within the stack contains
associated handlers and functions. The number

behavior.
The implemented application, as shown in
figure 1.a, contains:
e a main stack named “Small CPU
Emulator”, which hosts the main
interface and program logic, and

of lines of code for each object is indicated in
Figure 1.b and Figure 1.c.

() AddParamToSelectedRow

B AddParamToSelectedRow :
() AddToRegister

o ____________________________________'_n__ mEHEEUtELInE @ Cleancell
Q) small CPU Emulator El B FillGridwithNumbers H :
-~ ! . B CrawOneRegister
O candPringpal E IsReqgisterParam @ instructionMeedsParam
E LETrim) LoadGridFromSME
Ly B Data Grd Templates 1751847241400 B . [LosdProgrambialog
— m NLIF‘I'IEFE_LII‘III[E' B RefreshallRegistersFromstate
L "= k m @ ReaqisterpPrefix
{:‘-_ i m I:IFE'G'FIE'I'ICEFIj [resizestack
m RuniCPU) saveGridToSME

) saveProgrambialog
[selectMextRowFrom [setRegistervalue

b) handlers and functions in Card c¢) handlers and functions in Stack
Figure 1. Small CPU Emulator structure

AR FERNE ERENE Y
a) architecture

This routine expands the main menu to fit the
entire window width and initializes the
DataGrid object StringGridComputer with 50
numbered, empty rows, using
FillGridWithNumbers, as shown in code
sequence from figure 2.a.

2.2. Small CPU Emulator coding

The application initialization begins in the
handler preOpenCard, executed when the
CardPrincipal card is loaded.

~ SaveGridToSME, pEileRath.
- line 1: KRY_M_GRIDFILE v1
- subsequent lines: tab-separated values:

Nr<TAB>Comanda<TAB>Param

command FillGridWithNumbers pGridName,
local fDatad. 1 command SaveGridToSME pFilePath

local tQut, thanetTotal, t(Row tRowA, tTab
repeat with 1= 1 to 50 o T
put 1 into tDataAl1]l["Nr"]. — numbered line index put m!!c!?ls!?!te[[& or into tQut - Start with
put empty into {DataAlil["Sel"] signature .
— Instruction mnemonic column ("Comanda'") , put the dgNumbsrOfl.iges of group
- - StringGridComputer” into tTotal
put empty into tDataAl1]["Comanda"] o i i Y o
- Paramet_er foperanq column ("Param') gm the ggﬁf‘;&kg_u . [t%;;i] Lgronp
put empty into tDataAl1l["Param"] "StringGridComputer” into tROWA
put CleanCell(tRoWA["Nr!]) into tLine

end repeat put tLine & tTab & CleanCell(tRowA["Comanda"])
into tLjine
set the dgData of group pGridName to tDataA put tLine & tTab & CleanCell(tRowA["Param"]) into
n - L - n . 1 n g m
send "SglectRow, 1" to group "StringGridComputer” in S L & S S0k
1 millisecond end repeat

put tQut into yrl ("file:" & pEilePath)
))) answer "Saved syccesfully !"
end FillGridWithNumbers end SaveGridToSME,
a) FillGridWithNumbers coding b) SaveGridToSME coding

Figure 2. Small CPU Emulator coding 1

SaveGridToSME command, shown in figure
2.b, which generates a *.sme file containing
the current instruction set. The file header

The simulator allows manual editing or file-
based loading of assembly-like programs.
Saving functionality is handled by the

180

Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

includes a unique signature to prevent loading
incompatible file types.

Before writing data to file, the system cleans
all strings to remove invalid characters or
trailing spaces using the function CleanCell
form figure 3.a.

The core execution routine, ExecuteLine
(figure 3.b), receives the line number of the

— CleanCell

— Remove leading/trailing spaces and tabs

function CleanCell pText
localt, tLen
put plext into t

— strip leading spaces/tabs
repeat while (t begins with " ") or (t begins with
oumToChar(o))
delete char 1 of t
end repeat

— strip trailing spaces/tabs
put length(t) into tLen
repeat while {L,en > 0 and (char tLen of t is " " or char
tLen of tis pumToChar(9))
delete char {Lep of t
subtract 1 from {Len,
end repeat

return t

end CleanCell
a) CleanCell coding

instruction to execute. It reads the command
and parameter fields, validates them, and then
executes the corresponding operation. If the
instruction is empty, execution skips to the
next line; otherwise, it executes the appropriate
case in the switch—break block.

— Execute ONE instruction from the currently selected

row (g3electedRow)

command Executel.ine pRow
local tRowd, tQpcode. tQpeodelIC, tParamText
local tDidMoye
put false into {DidMoyve
— get row data
put the dgDataOfLine[pRow] of group
"StringGridComputer” into tRowA,
put LCTrm(tRowA["Comanda"]) into tQpcode
put LCTrim(tRowA["Param"])....into tParamText
put folpper(tQpcode) into tOpcodel]C
if tOpcodelC is empty then
SeleatNextRowErom pRow
exit ExecuteLine
end if

switch (QpeodeUC
case "INC"
if IsRegisterParam(tParamText) then
AddToRegister tParamText, 1

else

answer "INC expects R1 or R2."
end if
break

b) ExecuteLine coding

Figure 3. Small CPU Emulator coding 2

This command works in tandem with helper
routines such as IsRegisterParam() which
validates operand type and AddToRegister(),
responsible for modifying the register values
dynamically. A separate command, RunCpu,
manages program execution in automatic
mode, handling delays, Ul wupdates, and
stopping conditions for cases as infinite loops.

2.3. Operating Small CPU Emulator

The interface was designed for simplicity and
clarity. A DataGrid element displays the
current program instructions, each row
containing the line number, command, and
parameter. Instruction insertion is performed
via graphical buttons representing predefined
commands, eliminating the need to memorize
syntax or mnemonics.
Each button is accompanied by a short
descriptive label. The application also
includes:

e three control buttons for Run, Stop, and

Step-by-step execution;

181

e visual representations of registers
using PictureBox controls, each
showing an incandescent lamp image
that toggles based on the register’s
value;

e increment/decrement buttons for each
register, allowing real-time
modification even during program
execution.

The program state can be saved or loaded using
the File — Open/Save menu. Files are stored
in plain ASCII *.sme format with TAB-
separated columns, allowing easy inspection or
manual editing under any OS.

When launched, the application loads a blank
instruction list with registers reset, mimicking
a cold start or hardware reset.

Navigation is possible via mouse or keyboard
arrows. A visual arrow cursor marks the
current line being executed or edited.
Instructions are inserted using the on-screen
buttons, as one can notice from figure 4, while
parameters can be added to selected lines.

The editor prevents invalid parameter
insertions but detects missing operands only at

Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

runtime.In such cases, the emulator halts
execution and notifies the user of the error.
The JMP instruction is handled through a
dialog that allows selecting the target line
number. The entered value is automatically
displayedrin the parameter column.

#

File Program Help

Comprites

w=s Regiter |

€= Reguter £

ooo0

00000

START

3. CONCLUSION

The Small CPU Emulator provides a
lightweight and intuitive environment for
simulating basic assembly-like programs.

Its graphical simplicity ~ encourages
experimentation and learning, helping students
grasp microprocessor fundamentals without
the overhead of complex toolchains.

Despite its limited instruction set, the emulator
supports a wide range of programmatic
scenarios and serves as an effective didactic
resource.

Future developments will aim to extend the
instruction set with more advanced arithmetic
operations, implement memory addressing,
and introduce dual decimal/binary visual

182

The automatic execution mode RunCpu
manages sequential instruction processing,
observing user-defined speed, and allowing
interruption or manual continuation from any
desired line.

Aqihimetical

R i wrmgite

m Subtract 1 from the Reg.

Control program

m Mo operation (paune)

5TF End aif the program

IMP himm b b

Registers and memorny

m Swap B1 ard B2

5TO Copy Fx o RM
Conplara FM in Bx
Registry Testimg

Chveck if Ru=0
Choeck i R1 = R2

Execution Speed

Hide Caommands:

Figure 4. Using the Small CPU Emulator

representation of data — features commonly
found in professional or web-based emulators.

REFERENCES

[1] Abdiakhmetova, Z., Temirbekova, Z.,
Aimal Rasa, G., Berdaly, A. Using of
microcontroller for student learning
process. Journal of Mathematics,
Mechanics and Computer Science,
122(2), 114-123, 2024.

[2] Fiilop, M.T.; Udvaros, J.; Guban, A.;
Sandor, A. Development of
Computational Thinking Using
Microcontrollers Integrated into OOP.
Sustainability 2022

Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

[3] Little Man Computer [5] Vrbancic, F., Kocijanci€¢, S. Strategy
https://en.wikipedia.org/wiki/Little M for learning microcontroller
an_Computer programming—a graphical or a textual

[4] Visan 1., Diaconu “Home Automation start?. Educ Inf Technol 29, 5115-
System Using ESP8266 5137, 2024
Microcontroller and Blynk [6] WDR paper computer
Application[J]”. The Scientific https://en.wikipedia.org/wiki/'WDR_p
Bulletin of Electrical Engineering aper_computer

Faculty, 21(2):59-62, 2021.

183

https://en.wikipedia.org/wiki/Little_Man_Computer
https://en.wikipedia.org/wiki/Little_Man_Computer
https://en.wikipedia.org/wiki/WDR_paper_computer
https://en.wikipedia.org/wiki/WDR_paper_computer

