
Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

178

GRAPHICAL APPLICATION FOR SIMULATING THE OPERATION OF A

MICROPROCESSOR

C.M. Muscai, Babeș-Bolyai University, Reșița, ROMANIA

M.D. Stroia*(Corresponding author), Babeș-Bolyai University, Reșița, ROMANIA

C. Hațiegan, Babeș-Bolyai University, Reșița, ROMANIA

C.Popescu, “Constantin Brȃncuşi” University of Tȃrgu Jiu, ROMANIA

ABSTRACT: This paper presents a software application designed to simulate the basic operation of

a microprocessor for educational purposes. The application employs a custom, easy-to-use assembly

language and provides an integrated environment for both programming and simulation of the

proposed microprocessor. As such, it serves as a valuable didactic tool for introducing students to

assembly programming concepts and to the fundamental principles governing the operation of

microprocessors and microcontrollers. The application was developed using LiveCode, a free

programming language chosen for its capability to compile applications across major operating

systems, including both desktop and mobile platforms. Consequently, the program can be executed

on any computer without requiring external libraries, installation, or elevated user privileges. The

compiled files are fully portable and can run on any system based on Windows, Linux, or macOS.

KEY WORDS: microcontroller, programming, design, education.

1. TECHNOLOGICAL CONTEXT

AND MOTIVATION

The rapid evolution of technology, particularly

in the field of mechatronics, has led to an

almost complete abstraction of hardware

components. Within this modern approach,

most functionalities are handled exclusively

through external software libraries, whose

internal mechanisms are often not fully

understood. This abstraction has increased the

difficulty of comprehending the actual

operation of hardware components.

The use of modern educational tools and

development platforms such as Arduino or

Raspberry Pi significantly enhances the overall

quality of teaching, especially in the area of

microcontrollers. Several studies confirm that

this approach benefits students by increasing

motivation and employability while also

improving programming skills and facilitating

individual learning [1].

Computational thinking has become an

essential requirement, driven by the growing

process of digitalization and the increasing

demand for engineers skilled in programming

microcontrollers and IoT devices, which are

now ubiquitous in both industrial and domestic

environments [2].

Mechatronic applications developed

exclusively through high-level libraries tend to

be large and resource-intensive, consuming

considerable storage and RAM space on

microcontrollers [4] . Although the processing

power of modern devices has improved

dramatically, achieving high energy efficiency

and execution speed still requires a deep and

precise understanding of the underlying

principles and specific characteristics of

mechatronic devices [5].

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

179

Currently, several types of code interpreters

and just-in-time compilers are used for

microcontroller programming, each offering

distinct advantages and disadvantages in terms

of memory footprint and execution speed [5].

This paper proposes a new perspective on

microcontroller programming by introducing a

didactic software application designed to be

simple, intuitive, and easy to manage for both

students and educators.

2. SIMULATOR DESIGN AND

IMPLEMENTATION

The Small CPU Emulator was designed as an

educational tool with a clear and minimalist

interface, focusing strictly on functionality

relevant to learning assembly-like

programming concepts.

The design of the minimal processor

implemented in the Small CPU Emulator

application was inspired by the educational

computer Know-how Computer, a concept

created in the 1980s by Wolfgang Back and

Ulrich Rohde. The original system was

conceived as a paper-based learning tool,

where users manually wrote programs and

traced their execution step by step using a pen.

In its initial form, the system featured eight

memory registers and twenty-one possible

lines of code, while the register values were

represented visually using matchsticks placed

within squares, each symbolizing a register [4].

The complete list of instructions implemented

by the virtual processor is presented in Table

1, along with a brief description of each

instruction’s function. The virtual processor

integrated into the application adopts a

simplified structure compared to the original

concept. It consists of two working registers

R1 and R2 and a third register, RM, used for

storing auxiliary data or intermediate states

during program execution.

To preserve simplicity, the instruction set was

minimized as follows:

• 2 arithmetic instructions,

• 2 register testing instructions,

• 3 data transfer instructions (for

register-to-register copying),

• 3 input/output control instructions,

plus:

• NOP (No Operation),

• STP (Stop Program – terminates

execution),

• JMP (Jump – branches to a specified

line).

To better illustrate the execution stages of a

program, the emulator includes the option to

run the virtual processor either in step-by-step

mode or in automatic mode, with an adjustable

execution speed controlled via a graphical

slider interface.

Table 1. The complete list of the virtual CPU instructions

Instruction Type Action

INC Rx Arithmetical Adds 1 to the value of R1 or R2 register
DEC Rx Arithmetical Subtracts 1 from the value of R1 or R2 register
NOP Generic No action, just delay
STP Generic Marker for end of the program
JMP xx Control Makes the row xx the next operation to run, unconditional jump
REX Register Swaps the content of the two registers R1 and R2
STO Rx Register Stores the value in R1 or R2 into RM register
LOD Rx Register Restores, loads the value stored in the RM register into R1 or R2
ISZ Rx Comparison Compares the value stored in R1 or R2 and jumps over the next instruction if

condition is met
ISE Comparison Compares the values stored in R1 and R2, if they are equal then it jumps over

the next instruction

2.1. Small CPU Emulator in LiveCode

Applications developed in LiveCode are stored

as binary stacks that include both executable

code and all interface objects (such as buttons,

fields, and images) as well as optional

graphical or audio assets.

Internally, each LiveCode project can contain

one or more stacks, each composed of one or

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

180

more cards where interface elements are

placed.

These cards can be shown or hidden

dynamically during execution, allowing

transitions, animations, or modular interface

behavior.

The implemented application, as shown in

figure 1.a, contains:

• a main stack named “Small CPU

Emulator”, which hosts the main

interface and program logic, and

• a secondary stack, “HlpStack”, which

contains the help window accessible

through the main menu.

Each object within the stack contains

associated handlers and functions. The number

of lines of code for each object is indicated in

Figure 1.b and Figure 1.c.

a) architecture b) handlers and functions in Card c) handlers and functions in Stack

Figure 1. Small CPU Emulator structure

2.2. Small CPU Emulator coding

The application initialization begins in the

handler preOpenCard, executed when the

CardPrincipal card is loaded.

This routine expands the main menu to fit the

entire window width and initializes the

DataGrid object StringGridComputer with 50

numbered, empty rows, using

FillGridWithNumbers, as shown in code

sequence from figure 2.a.

a) FillGridWithNumbers coding b) SaveGridToSME coding

Figure 2. Small CPU Emulator coding 1

The simulator allows manual editing or file-

based loading of assembly-like programs.

Saving functionality is handled by the

SaveGridToSME command, shown in figure

2.b, which generates a *.sme file containing

the current instruction set. The file header

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

181

includes a unique signature to prevent loading

incompatible file types.

Before writing data to file, the system cleans

all strings to remove invalid characters or

trailing spaces using the function CleanCell

form figure 3.a.

The core execution routine, ExecuteLine

(figure 3.b), receives the line number of the

instruction to execute. It reads the command

and parameter fields, validates them, and then

executes the corresponding operation. If the

instruction is empty, execution skips to the

next line; otherwise, it executes the appropriate

case in the switch–break block.

a) CleanCell coding b) ExecuteLine coding

Figure 3. Small CPU Emulator coding 2

This command works in tandem with helper

routines such as IsRegisterParam() which

validates operand type and AddToRegister(),

responsible for modifying the register values

dynamically. A separate command, RunCpu,

manages program execution in automatic

mode, handling delays, UI updates, and

stopping conditions for cases as infinite loops.

2.3. Operating Small CPU Emulator

The interface was designed for simplicity and

clarity. A DataGrid element displays the

current program instructions, each row

containing the line number, command, and

parameter. Instruction insertion is performed

via graphical buttons representing predefined

commands, eliminating the need to memorize

syntax or mnemonics.

Each button is accompanied by a short

descriptive label. The application also

includes:

• three control buttons for Run, Stop, and

Step-by-step execution;

• visual representations of registers

using PictureBox controls, each

showing an incandescent lamp image

that toggles based on the register’s

value;

• increment/decrement buttons for each

register, allowing real-time

modification even during program

execution.

The program state can be saved or loaded using

the File → Open/Save menu. Files are stored

in plain ASCII *.sme format with TAB-

separated columns, allowing easy inspection or

manual editing under any OS.

When launched, the application loads a blank

instruction list with registers reset, mimicking

a cold start or hardware reset.

Navigation is possible via mouse or keyboard

arrows. A visual arrow cursor marks the

current line being executed or edited.

Instructions are inserted using the on-screen

buttons, as one can notice from figure 4, while

parameters can be added to selected lines.

The editor prevents invalid parameter

insertions but detects missing operands only at

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

182

runtime.In such cases, the emulator halts

execution and notifies the user of the error.

The JMP instruction is handled through a

dialog that allows selecting the target line

number. The entered value is automatically

displayed in the parameter column.

The automatic execution mode RunCpu

manages sequential instruction processing,

observing user-defined speed, and allowing

interruption or manual continuation from any

desired line.

Figure 4. Using the Small CPU Emulator

3. CONCLUSION

The Small CPU Emulator provides a

lightweight and intuitive environment for

simulating basic assembly-like programs.

Its graphical simplicity encourages

experimentation and learning, helping students

grasp microprocessor fundamentals without

the overhead of complex toolchains.

Despite its limited instruction set, the emulator

supports a wide range of programmatic

scenarios and serves as an effective didactic

resource.

Future developments will aim to extend the

instruction set with more advanced arithmetic

operations, implement memory addressing,

and introduce dual decimal/binary visual

representation of data — features commonly

found in professional or web-based emulators.

REFERENCES

[1] Abdiakhmetova, Z., Temirbekova, Z.,

Aimal Rasa, G., Berdaly, A. Using of

microcontroller for student learning

process. Journal of Mathematics,

Mechanics and Computer Science,

122(2), 114–123, 2024.

[2] Fülöp, M.T.; Udvaros, J.; Gubán, Á.;

Sándor, Á. Development of

Computational Thinking Using

Microcontrollers Integrated into OOP.

Sustainability 2022

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

183

[3] Little Man Computer

https://en.wikipedia.org/wiki/Little_M

an_Computer

[4] Visan I., Diaconu “Home Automation

System Using ESP8266

Microcontroller and Blynk

Application[J]”. The Scientific

Bulletin of Electrical Engineering

Faculty, 21(2):59-62, 2021.

[5] Vrbančič, F., Kocijančič, S. Strategy

for learning microcontroller

programming—a graphical or a textual

start?. Educ Inf Technol 29, 5115–

5137, 2024

[6] WDR paper computer

https://en.wikipedia.org/wiki/WDR_p

aper_computer

https://en.wikipedia.org/wiki/Little_Man_Computer
https://en.wikipedia.org/wiki/Little_Man_Computer
https://en.wikipedia.org/wiki/WDR_paper_computer
https://en.wikipedia.org/wiki/WDR_paper_computer

