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CONTROL OF A HEXAPOD ROBOT USING A PID ALGORITHM

Gilca Gheorghe, Lecturer Phd., “Constantin Brdancusi” University from Tdargu Jiu,
ROMANIA

ABSTRACT: The paper presents a method for controlling the motion of a hexapod robot based on a PID
(Proportional-Integral-Derivative) algorithm. The proposed system follows predefined trajectories by establishing a
two-level control architecture: body-level kinematic control and leg joint control. The advantages of using PID control -
such as stability, accuracy, and implementation simplicity - are highlighted.
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1. INTRODUCTION

In recent decades, the development of
autonomous systems and mobile robots has
undergone significant progress, driven by
advances in electronics, artificial intelligence,
and lightweight high-strength materials.
Among the various mechanical configurations
used, hexapod robots occupy an important
place due to their ability to move stably on
uneven terrain, mimicking the locomotion of
insects in nature [1].

A hexapod robot is equipped with six
articulated legs, each typically having three
degrees of freedom (coxa, femur, and tibia).
This configuration provides superior static
and dynamic stability compared to biped or
quadruped robots. Moreover, a hexapod can
maintain ground contact even when one or
two legs lose traction, making it ideal for
applications such as planetary exploration,
search and rescue, industrial inspection, or
autonomous agriculture [2].

However, the kinematic complexity of a
hexapod robot is high—each leg contributes
to maintaining balance and generating
propulsion, requiring coordinated control of
all 18 joints. For this reason, stable trajectory
control becomes essential for achieving the
desired motion without oscillations or loss of
balance.

255

Controlling the motion of a hexapod robot
involves simultaneously managing two levels
of complexity:

e body-level control, responsible for
tracking the desired trajectory in the
global workspace, and

e joint-level control, responsible for the
precise coordination of each leg
through inverse kinematics.

Most recent studies rely on advanced control
techniques, such as adaptive algorithms, fuzzy
models, or neural networks [3]. However,
these methods involve a high computational
load and complex parameter calibration. In
practical  applications where hardware
resources are limited, a simpler and more
robust algorithm is preferable.

The PID (Proportional-Integral-Derivative)
algorithm represents a classical yet highly
effective solution for controlling systems with
moderate nonlinearity. Due to its simple
implementation and robustness to parameter
variations, PID control is widely used in
robotics, including trajectory control, speed
control, and joint position regulation [4].
Applying this type of control to a hexapod
robot offers a balance between precision,
stability, and low computational cost.

In paper [5], the development of an
educational system focused on level control in
a tank is presented, featuring both manual and
automatic adjustment options, allowing the
testing of control algorithms such as PID.
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In the paper [10] a control system for a
dual axis sun tracker is proposed wused to
automatic or remote position control of the
photovoltaic panels.

In paper [6], a detailed method for
controlling the movement of a robot
participating in a SUMO competition is
presented. The article [11] describes the how
a robot moves in a labyrinth, and also the
possibility of finding the way to the exit of the
labyrinth.

The papers [7,12] presents experiments
that use voice control applied to animatronic
structures as well as to a robotic structure.

2. MODELING OF THE HEXAPOD
ROBOT

This chapter explains the mechanical
structure, the kinematic model (both forward
and inverse), and the locomotion principles of
a hexapod robot.

2.1 Mechanical Structure of the Hexapod
Robot

A hexapod robot is a platform equipped with
six independent legs, each having three
degrees of freedom (DOF):

e coxa — the proximal joint that rotates
the leg in the horizontal plane;

e femur — the middle segment that
controls the lifting or lowering of the
leg;

o tibia — the distal segment that extends
or contracts the step length [1].

Thus, the robot has a total of 18 degrees of
freedom.

The central body (referred to as the body or
chassis) serves as a platform for mounting
sensors (IMU, cameras, LiDAR) and the
power supply.

2.1.1 Main Structural Components
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o Base structure: made of aluminum or
composite materials to ensure low
weight and high rigidity.

e Actuators: digital servo motors (e.g.,
Dynamixel MX-64) that provide
angular precision and torque control.

e Sensors: joint encoders, IMU
(accelerometer + gyroscope) for body
orientation, and optionally contact
sensors for ground detection.

e Controller: a microcontroller (STM32,
Arduino Mega) or a mini-computer
(Raspberry Pi, Jetson Nano) equipped
with CAN or serial interfaces for leg
synchronization.

2.1.2 Leg positioning

The legs are arranged symmetrically, three on
each side of the body:

e front legs (1,2): responsible for
directional stabilization;
e middle legs (3,4): responsible for
maintaining the center of mass;
e rear legs (5,6): responsible
propulsion.
This configuration provides the robot with a
stable support polygon, even during
locomotion [8].

for

2.2 Kinematic model

The kinematic model of a hexapod robot
describes the relationship between the joint
angles and the spatial position of the leg’s
end-effector.

2.2.1 Forward kinematics of the leg

For each
defined:
e Li: length of the coxa;
e Lz: length of the femur;
e Las: length of the tibia.
The position of the leg’s end-effector in the
local coordinate system is given by:

leg, the following segments are
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Xp =Ljcosqy + Lycos(g;+q,)+Licos (g, +q2 +qa)
Vg =Lysin g+ Lysin (q1 + q2) + Lasin(qy + g2 + q3),

7 - )

where qi, g2, and gs are the joint [9].
2.2.2 Inverse kinematics of the leg

The inverse kinematics problem consists in
determining the joint angles (q,,q,,q;) for a

desired end-effector position (x¢, y¢, zf).

The typical steps are:

1) Determine angle q: from the projection
onto the horizontal plane:

q, = arctan 2(ys, x) @

2) Apply the law of cosines to determine

gz and qs:
_xf+yf?—L%—L§
g, = arctan 2(—/1 — D?,D)

4)

q, = arctan 2(yg, xy) —arctan 2(L;sin q3,L; + Lycos q;) (5)

These relations are used to compute the
command values for each joint at every
control cycle [4].

2.3 Body Kinematics

The central body of the hexapod is considered
a rigid planar platform characterized by the

coordinates: (x.7.6),
where x and y are the positions in the plane,
and 0 is the orientation relative to the global
axis.

The motion of the body is described by:
X = v,Co8 8 — v},sin 8,y =v,.sin 8 + v, C0S 8,6 =w, (6)
where (v, v,) represent the translational
velocities, and w the angular velocity [8].
Pentru o deplasare stabild, traiectoria corpului
trebuie sa fie compatibild cu traiectoriile
picioarelor - adica proiectia centrului de
greutate (CoG) sd ramana in interiorul
poligonului de sprijin [2].
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3. PID CONTROL ALGORITHM

Controlling a hexapod robot requires the

synchronization of two distinct levels:

1. Body Control — establishing the
global motion of the robot: position
(x,y) and orientation 0 .

2. Joint  Control = —  accurately
positioning each leg according to the
desired trajectories.

The PID (Proportional-Integral-Derivative)
algorithm is one of the most widely used and
effective control methods for moderately
nonlinear systems, such as legged robots [4].
This chapter presents the mathematical model
of the PID controller, tuning techniques, and
its integration into the hexapod control
system.

3.1 Mathematical
controller

model of the PID

The PID controller generates the control
signal u(t) based on the error between the
desired value r(t) and the measured value y(t):

e(t) =7(t) — y(©) o

The control signal is:

t de(t)
u(t) = Kpe(t) + K, f e(t)dt + K,
0 dt
®)
where:
e K, = proportional gain — reacts

instantly to the error;

o K = integral gain — eliminates steady-
state error;

e Ky =

oscillations and increases stability.

derivative gain — attenuates

Discrete  version
controllers)

At a control frequency of 50-200 Hz:

(used in  digital

u[k] = Kpe[k] + KJZ eli] + K, w

i=0

©
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where T is sampling period.

3.2 Application of the PID Controller to the
Hexapod

The PID control is integrated at two levels:
3.2.1 Body-Level PID Controller

Objective: the robot must follow a global
trajectory defined by:

Pa = (xa,Ya,6a)
The error in global coordinates:

(10)

ey = Xq — X
ey = Ya — ¥
eg =0, —0
To the
transformed into the body frame:

(11)

avoid singularities, errors  are

ey =cosB-e +sinb-e,
D _ -

e, =—sinf-e.+tcosf-e
y x y (12)

PID applied to each error:

’ ’ del
Vy = prex + Kix.[ ey dt + ded—
b

de},

vy = K,yel + K f epdt + Ky, —=— It

(13)

deg
w = Kpgeg + KI'Q.[ Bgdf + Kdﬁ E

The result is a set of reference velocities
(vx,Vy,m) that are sent to the gait planner.

3.2.2 Joint-Level PID

For each leg:

da = (91a: 924, 93a) (14)
where the values are generated by the inverse
kinematics.

The error for each joint:
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€ = Giga — 4 (15)

The PID controller is applied:

de;
u; = Kp!. &y + Kii'j &y dat + Kdi' E 16)

This generates the
command for the joint servomotors.

torque or position

3.3 PID parameter tuning

Proper tuning of the PID parameters is
stable
There are three main methods:

essential for locomotion.

3.3.1 Manual (Heuristic) Tuning

1. Increase Kp until oscillations appear.
2. Increase Ka to reduce the oscillations.
3. Increase Ki only as much as necessary
to eliminate the steady-state error.
Advantage: simple and fast.

Disadvantage: depends on user experience.

3.3.2 Ziegler—Nichols (ZN) Method

1. SetKi=0and Ka=0.
Gradually increase Kp until the system
reaches sustained oscillations —
obtain:

o Ku—ultimate (critical) gain,
o Tu-— oscillation period.

Table ZN:

Tip control||K;, K; K,

P 0.50Ku |- —

PI 0.45 Ky||1.2K_p/Tu|—

PID 0.60 Ky|2Kp/ Ty  |KpTu/8

The ZN method is a standard approach in the
robotics control literature.

3.3.3 Adaptive PID tuning for a hexapod
robot
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For uneven terrain, the PID gains can be
adjusted in real time:

K,(t) =Kpo +ale(t) |
K;(t) =Kz + L5 16e(t) |

amn

This method enables stable control even when
the load or terrain varies [3].

4. SOFTWARE ARCHITECTURE

This section presents in detail the software
architecture used for implementing PID
control of the hexapod robot, as well as the
results  obtained in the  simulation
environment. The main objective is to
validate the controller’s performance under
controlled conditions, prior to implementation
on real hardware.

/I Gait

class TripodGait {
public:
TripodGait(double cycle=0.6, double duty=0.6, double clearance=0.025, double stepLen=0.06)
:T_{cycle), duty_(duty), clr_(clearance), step_(stepLen) {
groupA_={1,4,5} groupB_={2,36};
}
/[ phasein [0,1)
double phase(int legld, double t) const {
double tau = fmod(t, ) /T_;
if (groupB_.count(legld)) tau = fmod(tau + 0.5, 1.0);
return tau;
}
// target foot point in leg local frame (simple nominal pattern)
std::array<double,3> footTarget(int legld, double t, double vx_body) const {
(void)vx_body; // keep simple; could scale step_ by vx_body
double tau = phase(legld, t);
const double stance = duty_;
const double x_back =-step_/2.0, x_front = +step_/2.0;
const doubley_off=0.0,20=00;

double xy,z;
if (tau < stance) {
double s = tau / stance;
x=x_front + (x_back- x_front) *s;
y=y_off;z=10;
Jelse {
double s = (tau - stance) / (1.0 - stance);
/[ smoothstep quintic: 1053 - 15514 + 6515
double s2=5%s, s3=52*s, s4=53*s, s5=s4*s;
double blend = 10*s3 - 15%s4 + 6*s5;
x=x_back + (x_front - x_back) * blend;
y=y_off
2=20+lr_*sin(PI *s); // arc over ground
}
return {x,y,2);
}
private:
double T_, duty_, clr_ step_;
std::set<int> groupA _, groupB_;
b

/

/ Body Control

struct Pose2D { double x{0}, y{0}, th{0}; J;
struct BodyCmd { double vx{0}, wy{0}, wz{0}; };

class BodyPID {
public:
BodyPID(double dt) {
PIDGains gx{1.2,0.1,0.3, 20.0,-0.25, 0.25,-05, 0.5);
PIDGains gy{1.2, 0.1, 03, 200, -0.25, 0.25, 0.5, 0.5}
PIDGains gt{2.0,0.1, 0.2, 20.0,-1.2, 1,05, 0.5}
px_=PID(gx, dt); py_=PID(gy, dt); pth_= PID(gt, dt);
}
BodyCmd compute{const Pose2D& cur, const Pose2D& ref) {
double dx = refx - curx;
double dy = refy - cury;
double dth = wrap_pi(refith - curth);
double ¢ = cos(curth), s = sin(curth);
double exb = c*dx+s*dy;
double eyb = -s¥dx + c*dy;
return { px_update(exb), py._. pth_.update(dth) }
}
private:
PID px_, py_ pth;
b
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/I Joint Control
class LeglointPID
public:
LeglointPID(double dt) {
|/ intial gains; tune for your platform
pids_[0] = PID(PIDGains{6.0, 30.0,0.03, 25.0, -2, 20,-0.2, 0.}, dt) // coxa
pids [1)= PIDIPIDGains8.0, 40,005, 25.0,-25, 25, 902, 02, o/ emur
pids_[2] = PID(PIDGains{7.0,35.0,0.04, 25.0,-25, 25,-0.2, 0.2}, o) // tibia
}
std:array<double,3> torque(const std:array<double,3>& g,
const std:array<double, 3>8 gd) {
st::array<double, 3> uf);
for (inti=0;ic3i#+)
double & = gl - o]
u[i] = pids_[i.update(e);
}
return u;
}
private:
std::array<PID,3> pids

class HexapodControler {
public:
explicit HexapodController{double dt=0.005) : dt_(dt), body (], gait () {
geom_={005,0.10,0.12}
fimits_={
{deg2rad(-60), deg2rad| 60]},
{deg2rad(-10), deg2rad| 80]},
{deg2rad(-130), deg2rad(-5)}
b
for (inti=L;ic=65i#+) {
ik ] = std:make_unique<Leglk>(geom_, limits );
joints_[i] = std:make_unigue<LeglointPID>{dt ;
}
1/ nominal mounts (fyou ater transform targets from body toleg frames)
mountkY_={
{1,{:0.10,40.09
2,020,009},
3,{000,40.11}}
{4,{000,012),
{5,1010,4009))
{6,40.10, 009}
b
}

)

|/ Provide pose from sensors or simulator
void setPoseForSim{const Pose20& p){ pose_=p;}
Pose2D readPose() const{ return pose  }

|/~ Main control step
void step(double t, const Pose2D& ref) {
BodyCmd cmd = body_compute(pose., ref];

1/1) (Optional) adjust gait using cmd (v vywe)
112) For each leg: generate foot target, solve IK, compute torgues, apply
for (it leg=1; lege=5; ++leg) {
auto tgt = gait_footTarget(leg,t, cmd.vx);
auto gd = k_[legl->solveltet{0], tet[L], tet[2]);
LegState st = readlointStatefleg, //TODO: replace
auto tau = joints_[leg]->torque(st., qd);
applylointTorque(leg, taul //7000: replace
}

1/3)Tiny body kinematics "sim" s the demo runs standalone
integrateBody(cmd];
}

private:
[~ Hardware/simulator hooks (replace for your system) -~
void applyJointTorqueint leg, const std::array<double, >& u]
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(void)leg; (void)u;
//7T0DO: send torques to drivers or physics engine
}
LegState readJointState(int leg) const {
(void)leg;
//TODO: read encoders; here we return zeros as a placeholder
return {};
1
I

void integrateBody(const BodyCmd& cmd) {

// Integrate simple 2D body kinematics (world frame)

double ¢ = cos(pose_.th), s = sin(pose_.th};

double dx = ( cmd.vx*c - cmd.wy*s ) * dt_;

double dy = (cmd.vx*s + cmdvy*c) * dt

double dth=cmd.wz * dt_;

pose_x += dx; pose_y += dy; pose_th = wrap_pi(pose_th + dth);
}

static double deg2rad(double d){ return d*P1/180.0; }

double dt_;

Pose2D pose._{};

BodyPID body_;

TripodGait gait_;

LegGeom geom_;

LegLimits limits_;

std::map<int, std::unique_ptr<Leglk>> ik_;
std::map<int, std::unique_ptr<LeglointPID>> joints_;
std::map<int, std::array<double,2>> mountXY_;

Reference Trajectory ===

static Pose2D refTrajectory(double t) {
1/0.85:4X (0.2 m/s), 8..16s: +Y, 16..20s: rotate to +90 deg
if (t<8.0)  return{0.2*,0.0,0.0};
else if (t < 16.0) return {1.6, 0.2*(t-8.0), 0.0};
else {
double th = std::min(90.0, (t-16.0)*22.5);
return {L.6, 1.6, th * PI/180.0};
}
}

I Main

int main() {
const double dt = 0.005; // 200 Hz
HexapodController hex(dt);
hex.setPoseForSim({0.0, 0.0, 0.0});

auto t0 = chrono::steady_clock::now();

double simT =20.0;

while (true) {
auto now = chrono::steady_clock::now();
double t = chrono::duration<double>(now - t0).count();
if (t > simT) break;

Pose2D ref = refTrajectory(t);
hex.step(t, ref);

/[ simple pacing (not hard RT)
std::this_thread::sleep_for(std::chrono::milliseconds(4)); // ~250 Hz loop pacing
}

Pose2D p = hex.readPose();

std:cout << "Final pose: x=" << p.x << " m, y=" << py
<<"m, th="<< (p.th*180.0/PI) << " deg\n";

return 0;

5. CONCLUSIONS

Implementing PID control for a hexapod
robot represents a simple, robust, and efficient
solution for educational, academic, and proto-
industrial applications. By extending the
system with adaptive or predictive methods,
performance comparable to that of advanced
robots used in rough-terrain exploration can

be achieved.
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Compared to P and PI control, PID control
is clearly superior for hexapod robots because
it:

o reduces tracking error,

o improves stability,

e ensures robustness against disturbances,

e maintains reasonable energy
consumption.
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