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ABSTRACT: The paper presents a method for controlling the motion of a hexapod robot based on a PID 

(Proportional–Integral–Derivative) algorithm. The proposed system follows predefined trajectories by establishing a 

two-level control architecture: body-level kinematic control and leg joint control. The advantages of using PID control - 

such as stability, accuracy, and implementation simplicity - are highlighted. 
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1. INTRODUCTION 
 

In recent decades, the development of 

autonomous systems and mobile robots has 

undergone significant progress, driven by 

advances in electronics, artificial intelligence, 

and lightweight high-strength materials. 

Among the various mechanical configurations 

used, hexapod robots occupy an important 

place due to their ability to move stably on 

uneven terrain, mimicking the locomotion of 

insects in nature [1]. 

A hexapod robot is equipped with six 

articulated legs, each typically having three 

degrees of freedom (coxa, femur, and tibia). 

This configuration provides superior static 

and dynamic stability compared to biped or 

quadruped robots. Moreover, a hexapod can 

maintain ground contact even when one or 

two legs lose traction, making it ideal for 

applications such as planetary exploration, 

search and rescue, industrial inspection, or 

autonomous agriculture [2]. 

However, the kinematic complexity of a 

hexapod robot is high—each leg contributes 

to maintaining balance and generating 

propulsion, requiring coordinated control of 

all 18 joints. For this reason, stable trajectory 

control becomes essential for achieving the 

desired motion without oscillations or loss of 

balance. 

Controlling the motion of a hexapod robot 

involves simultaneously managing two levels 

of complexity: 

• body-level control, responsible for 

tracking the desired trajectory in the 

global workspace, and 

• joint-level control, responsible for the 

precise coordination of each leg 

through inverse kinematics. 

Most recent studies rely on advanced control 

techniques, such as adaptive algorithms, fuzzy 

models, or neural networks [3]. However, 

these methods involve a high computational 

load and complex parameter calibration. In 

practical applications where hardware 

resources are limited, a simpler and more 

robust algorithm is preferable. 

The PID (Proportional–Integral–Derivative) 

algorithm represents a classical yet highly 

effective solution for controlling systems with 

moderate nonlinearity. Due to its simple 

implementation and robustness to parameter 

variations, PID control is widely used in 

robotics, including trajectory control, speed 

control, and joint position regulation [4]. 

Applying this type of control to a hexapod 

robot offers a balance between precision, 

stability, and low computational cost. 

In paper [5], the development of an 

educational system focused on level control in 

a tank is presented, featuring both manual and 

automatic adjustment options, allowing the 

testing of control algorithms such as PID.  
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In the paper [10] a control system for a 

dual axis sun tracker is proposed  used to 

automatic or remote position control of the 

photovoltaic panels. 

In paper [6], a detailed method for 

controlling the movement of a robot 

participating in a SUMO competition is 

presented. The article [11] describes the how 

a robot moves in a labyrinth, and also the 

possibility of finding the way to the exit of the 

labyrinth.   

The papers [7,12] presents experiments 

that use voice control applied to animatronic 

structures as well as to a robotic structure. 

 

2. MODELING OF THE HEXAPOD 

ROBOT 
 

This chapter explains the mechanical 

structure, the kinematic model (both forward 

and inverse), and the locomotion principles of 

a hexapod robot. 

 

2.1 Mechanical Structure of the Hexapod 

Robot 
 

A hexapod robot is a platform equipped with 

six independent legs, each having three 

degrees of freedom (DOF): 

• coxa – the proximal joint that rotates 

the leg in the horizontal plane; 

• femur – the middle segment that 

controls the lifting or lowering of the 

leg; 

• tibia – the distal segment that extends 

or contracts the step length [1]. 

Thus, the robot has a total of 18 degrees of 

freedom. 

The central body (referred to as the body or 

chassis) serves as a platform for mounting 

sensors (IMU, cameras, LiDAR) and the 

power supply. 

2.1.1 Main Structural Components 

• Base structure: made of aluminum or 

composite materials to ensure low 

weight and high rigidity. 

• Actuators: digital servo motors (e.g., 

Dynamixel MX-64) that provide 

angular precision and torque control. 

• Sensors: joint encoders, IMU 

(accelerometer + gyroscope) for body 

orientation, and optionally contact 

sensors for ground detection. 

• Controller: a microcontroller (STM32, 

Arduino Mega) or a mini-computer 

(Raspberry Pi, Jetson Nano) equipped 

with CAN or serial interfaces for leg 

synchronization. 

2.1.2 Leg positioning 

The legs are arranged symmetrically, three on 

each side of the body: 

• front legs (1,2): responsible for 

directional stabilization; 

• middle legs (3,4): responsible for 

maintaining the center of mass; 

• rear legs (5,6): responsible for 

propulsion. 

This configuration provides the robot with a 

stable support polygon, even during 

locomotion [8]. 

2.2 Kinematic model 

The kinematic model of a hexapod robot 

describes the relationship between the joint 

angles and the spatial position of the leg’s 

end-effector. 

2.2.1 Forward kinematics of the leg 

For each leg, the following segments are 

defined: 

• L₁: length of the coxa; 

• L₂: length of the femur; 

• L₃: length of the tibia. 

The position of the leg’s end-effector in the 

local coordinate system is given by: 
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   (1) 

where q₁, q₂, and q₃ are the joint [9]. 

 

2.2.2 Inverse kinematics of the leg  

 

The inverse kinematics problem consists in 

determining the joint angles  for a 

desired end-effector position . 

The typical steps are: 

1) Determine angle q₁ from the projection 

onto the horizontal plane: 

                                  (2) 
 

2) Apply the law of cosines to determine 

q₂ and q₃: 

                              (3) 

                   (4) 
     (5) 

 

These relations are used to compute the 

command values for each joint at every 

control cycle [4]. 
 

2.3 Body Kinematics 

The central body of the hexapod is considered 

a rigid planar platform characterized by the 

coordinates:  

where x and y are the positions in the plane, 

and θ is the orientation relative to the global 

axis. 

The motion of the body is described by: 

  (6) 
where 

 
represent the translational 

velocities, and 𝜔 the angular velocity [8]. 

Pentru o deplasare stabilă, traiectoria corpului 

trebuie să fie compatibilă cu traiectoriile 

picioarelor - adică proiecția centrului de 

greutate (CoG) să rămână în interiorul 

poligonului de sprijin [2]. 

       

3. PID CONTROL ALGORITHM 
 

Controlling a hexapod robot requires the 

synchronization of two distinct levels: 

1. Body Control – establishing the 

global motion of the robot: position 

(x,y) and orientation θ . 

2. Joint Control – accurately 

positioning each leg according to the 

desired trajectories. 

The PID (Proportional–Integral–Derivative) 

algorithm is one of the most widely used and 

effective control methods for moderately 

nonlinear systems, such as legged robots [4]. 

This chapter presents the mathematical model 

of the PID controller, tuning techniques, and 

its integration into the hexapod control 

system. 

 

3.1 Mathematical model of the PID 

controller 

 

The PID controller generates the control 

signal u(t) based on the error between the 

desired value r(t) and the measured value y(t): 

                                (7) 
 

The control signal is: 

    (8) 
 

where: 

• Kp = proportional gain – reacts 

instantly to the error; 

• Ki = integral gain – eliminates steady-

state error; 

• Kd = derivative gain – attenuates 

oscillations and increases stability. 

Discrete version (used in digital 

controllers) 

At a control frequency of 50–200 Hz: 

    (9) 
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where T is sampling period. 

 

3.2 Application of the PID Controller to the 

Hexapod  

 

The PID control is integrated at two levels: 

3.2.1 Body-Level PID Controller 

Objective: the robot must follow a global 

trajectory defined by: 

      (10) 

The error in global coordinates: 

             

                                                (11) 

 
To avoid singularities, the errors are 

transformed into the body frame: 

                   (12) 
 

PID applied to each error: 

 

            (13) 

 
 

The result is a set of reference velocities 

(υx,υy,ω) that are sent to the gait planner. 

3.2.2 Joint-Level PID 

For each leg: 

                              (14) 
 

where the values are generated by the inverse 

kinematics. 

The error for each joint: 

                                           (15) 
 

The PID controller is applied: 

                   (16) 
 

This generates the torque or position 

command for the joint servomotors.  

 

3.3 PID parameter tuning 

 

Proper tuning of the PID parameters is 

essential for stable locomotion. 

There are three main methods: 

3.3.1 Manual (Heuristic) Tuning 

1. Increase Kp until oscillations appear. 

2. Increase Kd to reduce the oscillations. 

3. Increase Ki only as much as necessary 

to eliminate the steady-state error. 

Advantage: simple and fast. 

Disadvantage: depends on user experience. 

3.3.2 Ziegler–Nichols (ZN) Method 

1. Set Ki = 0 and Kd = 0. 

2. Gradually increase Kp until the system 

reaches sustained oscillations → 

obtain: 

o Ku – ultimate (critical) gain, 

o Tu – oscillation period. 

Table ZN: 

Tip control 
 

  

P 0.50Ku – – 

PI 0.45 Ku 1.2K_p/Tu – 

PID 0.60 Ku 2Kp/ Tu KpTu /8 

The ZN method is a standard approach in the 

robotics control literature. 

 

3.3.3 Adaptive PID tuning for a hexapod 

robot 
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For uneven terrain, the PID gains can be 

adjusted in real time: 
 

           (17) 

 
 

This method enables stable control even when 

the load or terrain varies [3]. 

 

4. SOFTWARE ARCHITECTURE 
 

This section presents in detail the software 

architecture used for implementing PID 

control of the hexapod robot, as well as the 

results obtained in the simulation 

environment. The main objective is to 

validate the controller’s performance under 

controlled conditions, prior to implementation 

on real hardware. 

//=============================== Gait ================================== 
 
class TripodGait { 
public: 
    TripodGait(double cycle=0.6, double duty=0.6, double clearance=0.025, double stepLen=0.06) 
    : T_(cycle), duty_(duty), clr_(clearance), step_(stepLen) { 
        groupA_ = {1,4,5}; groupB_ = {2,3,6}; 
    } 
    // phase in [0,1) 
    double phase(int legId, double t) const { 
        double tau = fmod(t, T_) / T_; 
        if (groupB_.count(legId)) tau = fmod(tau + 0.5, 1.0); 
        return tau; 
    } 
    // target foot point in leg local frame (simple nominal pattern) 
    std::array<double,3> footTarget(int legId, double t, double vx_body) const { 
        (void)vx_body; // keep simple; could scale step_ by vx_body 
        double tau = phase(legId, t); 
        const double stance = duty_; 
        const double x_back = -step_/2.0, x_front = +step_/2.0; 
        const double y_off = 0.0, z0 = 0.0; 
 
        double x,y,z; 
        if (tau < stance) { 
            double s = tau / stance; 
            x = x_front + (x_back - x_front) * s; 
            y = y_off; z = z0; 
        } else { 
            double s = (tau - stance) / (1.0 - stance); 
            // smoothstep quintic: 10s^3 - 15s^4 + 6s^5 
            double s2=s*s, s3=s2*s, s4=s3*s, s5=s4*s; 
            double blend = 10*s3 - 15*s4 + 6*s5; 
            x = x_back + (x_front - x_back) * blend; 
            y = y_off; 
            z = z0 + clr_ * sin(PI * s); // arc over ground 
        } 
        return {x,y,z}; 
    } 
private: 
    double T_, duty_, clr_, step_; 
    std::set<int> groupA_, groupB_; 
}; 
 
//============================== Body Control =========================== 
 
struct Pose2D { double x{0}, y{0}, th{0}; }; 
struct BodyCmd { double vx{0}, vy{0}, wz{0}; }; 
 
class BodyPID { 
public: 
    BodyPID(double dt) { 
        PIDGains gx{1.2, 0.1, 0.3, 20.0, -0.25, 0.25, -0.5, 0.5}; 
        PIDGains gy{1.2, 0.1, 0.3, 20.0, -0.25, 0.25, -0.5, 0.5}; 
        PIDGains gt{2.0, 0.1, 0.2, 20.0, -1.2, 1.2, -0.5, 0.5}; 
        px_ = PID(gx, dt); py_ = PID(gy, dt); pth_ = PID(gt, dt); 
    } 
    BodyCmd compute(const Pose2D& cur, const Pose2D& ref) { 
        double dx = ref.x - cur.x; 
        double dy = ref.y - cur.y; 
        double dth = wrap_pi(ref.th - cur.th); 
        double c = cos(cur.th), s = sin(cur.th); 
        double exb =  c*dx + s*dy; 
        double eyb = -s*dx + c*dy; 
        return { px_.update(exb), py_.update(eyb), pth_.update(dth) }; 
    } 
private: 
    PID px_, py_, pth_; 
};  
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//============================ Joint Control ============================ 
class LegJointPID { 
public: 
    LegJointPID(double dt) { 
        // initial gains; tune for your platform 
        pids_[0] = PID(PIDGains{6.0, 30.0, 0.03, 25.0, -2.0, 2.0, -0.2, 0.2}, dt); // coxa 
        pids_[1] = PID(PIDGains{8.0, 40.0, 0.05, 25.0, -2.5, 2.5, -0.2, 0.2}, dt); // femur 
        pids_[2] = PID(PIDGains{7.0, 35.0, 0.04, 25.0, -2.5, 2.5, -0.2, 0.2}, dt); // tibia 
    } 
    std::array<double,3> torque(const std::array<double,3>& q, 
                                const std::array<double,3>& qd) { 
        std::array<double,3> u{}; 
        for (int i=0;i<3;i++) { 
            double e = qd[i] - q[i]; 
            u[i] = pids_[i].update(e); 
        } 
        return u; 
    } 
private: 
    std::array<PID,3> pids_; 
}; 
//============================ Hexapod Controller ======================= 
class HexapodController { 
public: 
    explicit HexapodController(double dt=0.005) : dt_(dt), body_(dt), gait_() { 
        geom_ = {0.05, 0.10, 0.12}; 
        limits_ = { 
            {deg2rad(-60), deg2rad( 60)}, 
            {deg2rad(-10), deg2rad( 80)}, 
            {deg2rad(-130), deg2rad(-5)} 
        }; 
        for (int i=1;i<=6;i++) { 
            ik_[i] = std::make_unique<LegIK>(geom_, limits_); 
            joints_[i] = std::make_unique<LegJointPID>(dt_); 
        } 
        // nominal mounts (if you later transform targets from body to leg frames) 
        mountXY_ = { 
            {1, {+0.10, +0.09}}, 
            {2, {+0.10, -0.09}}, 
            {3, { 0.00, +0.11}}, 
            {4, { 0.00, -0.11}}, 
            {5, {-0.10, +0.09}}, 
            {6, {-0.10, -0.09}}, 
        }; 
    } 
 
    // ---- Provide pose from sensors or simulator ---- 
    void setPoseForSim(const Pose2D& p){ pose_ = p; } 
    Pose2D readPose() const { return pose_; } 
 
    // ---- Main control step ---- 
    void step(double t, const Pose2D& ref) { 
        BodyCmd cmd = body_.compute(pose_, ref); 
 
        // 1) (Optional) adjust gait using cmd (vx,vy,wz) 
        // 2) For each leg: generate foot target, solve IK, compute torques, apply 
        for (int leg=1; leg<=6; ++leg) { 
            auto tgt = gait_.footTarget(leg, t, cmd.vx); 
            auto qd  = ik_[leg]->solve(tgt[0], tgt[1], tgt[2]); 
            LegState st = readJointState(leg);              // TODO: replace 
            auto tau = joints_[leg]->torque(st.q, qd); 
            applyJointTorque(leg, tau);                     // TODO: replace 
        } 
 
        // 3) Tiny body kinematics "sim" so the demo runs standalone 
        integrateBody(cmd); 
    } 
 
private: 
    // -------- Hardware/simulator hooks (replace for your system) -------- 
    void applyJointTorque(int leg, const std::array<double,3>& u) {  

        (void)leg; (void)u; 
        // TODO: send torques to drivers or physics engine 
    } 
    LegState readJointState(int leg) const { 
        (void)leg; 
        // TODO: read encoders; here we return zeros as a placeholder 
        return {}; 
    } 
    // ------------------------------------------------------------------- 
 
    void integrateBody(const BodyCmd& cmd) { 
        // Integrate simple 2D body kinematics (world frame) 
        double c = cos(pose_.th), s = sin(pose_.th); 
        double dx = ( cmd.vx*c - cmd.vy*s ) * dt_; 
        double dy = ( cmd.vx*s + cmd.vy*c ) * dt_; 
        double dth= cmd.wz * dt_; 
        pose_.x += dx; pose_.y += dy; pose_.th = wrap_pi(pose_.th + dth); 
    } 
 
    static double deg2rad(double d){ return d*PI/180.0; } 
 
    double dt_; 
    Pose2D pose_{}; 
    BodyPID body_; 
    TripodGait gait_; 
    LegGeom geom_; 
    LegLimits limits_; 
    std::map<int, std::unique_ptr<LegIK>> ik_; 
    std::map<int, std::unique_ptr<LegJointPID>> joints_; 
    std::map<int, std::array<double,2>> mountXY_; 
}; 
 
//============================== Reference Trajectory ==================== 
 
static Pose2D refTrajectory(double t) { 
    // 0..8s: +X (0.2 m/s), 8..16s: +Y, 16..20s: rotate to +90 deg 
    if (t < 8.0)       return {0.2*t, 0.0, 0.0}; 
    else if (t < 16.0) return {1.6, 0.2*(t-8.0), 0.0}; 
    else { 
        double th = std::min(90.0, (t-16.0)*22.5); 
        return {1.6, 1.6, th * PI/180.0}; 
    } 
} 
 
//================================= Main ================================= 
 
int main() { 
    const double dt = 0.005; // 200 Hz 
    HexapodController hex(dt); 
    hex.setPoseForSim({0.0, 0.0, 0.0}); 
 
    auto t0 = chrono::steady_clock::now(); 
    double simT = 20.0; 
    while (true) { 
        auto now = chrono::steady_clock::now(); 
        double t = chrono::duration<double>(now - t0).count(); 
        if (t > simT) break; 
 
        Pose2D ref = refTrajectory(t); 
        hex.step(t, ref); 
 
        // simple pacing (not hard RT) 
        std::this_thread::sleep_for(std::chrono::milliseconds(4)); // ~250 Hz loop pacing 
    } 
 
    Pose2D p = hex.readPose(); 
    std::cout << "Final pose: x=" << p.x << " m, y=" << p.y 
              << " m, th=" << (p.th*180.0/PI) << " deg\n"; 
    return 0; 
}  

 

5. CONCLUSIONS 
 

Implementing PID control for a hexapod 

robot represents a simple, robust, and efficient 

solution for educational, academic, and proto-

industrial applications. By extending the 

system with adaptive or predictive methods, 

performance comparable to that of advanced 

robots used in rough-terrain exploration can 

be achieved. 
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Compared to P and PI control, PID control 

is clearly superior for hexapod robots because 

it: 

• reduces tracking error, 

• improves stability,  

• ensures robustness against disturbances,  

• maintains reasonable energy 

consumption. 
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