
Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 255

CONTROL OF A HEXAPOD ROBOT USING A PID ALGORITHM

Gîlcă Gheorghe, Lecturer Phd., “Constantin Brâncuși” University from Târgu Jiu,

ROMANIA

ABSTRACT: The paper presents a method for controlling the motion of a hexapod robot based on a PID

(Proportional–Integral–Derivative) algorithm. The proposed system follows predefined trajectories by establishing a

two-level control architecture: body-level kinematic control and leg joint control. The advantages of using PID control -

such as stability, accuracy, and implementation simplicity - are highlighted.

KEY WORDS: PID control algorithm, desired position, position error, hexapod robot, body-level, joint-level

1. INTRODUCTION

In recent decades, the development of

autonomous systems and mobile robots has

undergone significant progress, driven by

advances in electronics, artificial intelligence,

and lightweight high-strength materials.

Among the various mechanical configurations

used, hexapod robots occupy an important

place due to their ability to move stably on

uneven terrain, mimicking the locomotion of

insects in nature [1].

A hexapod robot is equipped with six

articulated legs, each typically having three

degrees of freedom (coxa, femur, and tibia).

This configuration provides superior static

and dynamic stability compared to biped or

quadruped robots. Moreover, a hexapod can

maintain ground contact even when one or

two legs lose traction, making it ideal for

applications such as planetary exploration,

search and rescue, industrial inspection, or

autonomous agriculture [2].

However, the kinematic complexity of a

hexapod robot is high—each leg contributes

to maintaining balance and generating

propulsion, requiring coordinated control of

all 18 joints. For this reason, stable trajectory

control becomes essential for achieving the

desired motion without oscillations or loss of

balance.

Controlling the motion of a hexapod robot

involves simultaneously managing two levels

of complexity:

• body-level control, responsible for

tracking the desired trajectory in the

global workspace, and

• joint-level control, responsible for the

precise coordination of each leg

through inverse kinematics.

Most recent studies rely on advanced control

techniques, such as adaptive algorithms, fuzzy

models, or neural networks [3]. However,

these methods involve a high computational

load and complex parameter calibration. In

practical applications where hardware

resources are limited, a simpler and more

robust algorithm is preferable.

The PID (Proportional–Integral–Derivative)

algorithm represents a classical yet highly

effective solution for controlling systems with

moderate nonlinearity. Due to its simple

implementation and robustness to parameter

variations, PID control is widely used in

robotics, including trajectory control, speed

control, and joint position regulation [4].

Applying this type of control to a hexapod

robot offers a balance between precision,

stability, and low computational cost.

In paper [5], the development of an

educational system focused on level control in

a tank is presented, featuring both manual and

automatic adjustment options, allowing the

testing of control algorithms such as PID.

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 256

In the paper [10] a control system for a

dual axis sun tracker is proposed used to

automatic or remote position control of the

photovoltaic panels.

In paper [6], a detailed method for

controlling the movement of a robot

participating in a SUMO competition is

presented. The article [11] describes the how

a robot moves in a labyrinth, and also the

possibility of finding the way to the exit of the

labyrinth.

The papers [7,12] presents experiments

that use voice control applied to animatronic

structures as well as to a robotic structure.

2. MODELING OF THE HEXAPOD

ROBOT

This chapter explains the mechanical

structure, the kinematic model (both forward

and inverse), and the locomotion principles of

a hexapod robot.

2.1 Mechanical Structure of the Hexapod

Robot

A hexapod robot is a platform equipped with

six independent legs, each having three

degrees of freedom (DOF):

• coxa – the proximal joint that rotates

the leg in the horizontal plane;

• femur – the middle segment that

controls the lifting or lowering of the

leg;

• tibia – the distal segment that extends

or contracts the step length [1].

Thus, the robot has a total of 18 degrees of

freedom.

The central body (referred to as the body or

chassis) serves as a platform for mounting

sensors (IMU, cameras, LiDAR) and the

power supply.

2.1.1 Main Structural Components

• Base structure: made of aluminum or

composite materials to ensure low

weight and high rigidity.

• Actuators: digital servo motors (e.g.,

Dynamixel MX-64) that provide

angular precision and torque control.

• Sensors: joint encoders, IMU

(accelerometer + gyroscope) for body

orientation, and optionally contact

sensors for ground detection.

• Controller: a microcontroller (STM32,

Arduino Mega) or a mini-computer

(Raspberry Pi, Jetson Nano) equipped

with CAN or serial interfaces for leg

synchronization.

2.1.2 Leg positioning

The legs are arranged symmetrically, three on

each side of the body:

• front legs (1,2): responsible for

directional stabilization;

• middle legs (3,4): responsible for

maintaining the center of mass;

• rear legs (5,6): responsible for

propulsion.

This configuration provides the robot with a

stable support polygon, even during

locomotion [8].

2.2 Kinematic model

The kinematic model of a hexapod robot

describes the relationship between the joint

angles and the spatial position of the leg’s

end-effector.

2.2.1 Forward kinematics of the leg

For each leg, the following segments are

defined:

• L₁: length of the coxa;

• L₂: length of the femur;

• L₃: length of the tibia.

The position of the leg’s end-effector in the

local coordinate system is given by:

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 257

 (1)

where q₁, q₂, and q₃ are the joint [9].

2.2.2 Inverse kinematics of the leg

The inverse kinematics problem consists in

determining the joint angles for a

desired end-effector position .

The typical steps are:

1) Determine angle q₁ from the projection

onto the horizontal plane:

 (2)

2) Apply the law of cosines to determine

q₂ and q₃:

 (3)

 (4)
 (5)

These relations are used to compute the

command values for each joint at every

control cycle [4].

2.3 Body Kinematics

The central body of the hexapod is considered

a rigid planar platform characterized by the

coordinates:

where x and y are the positions in the plane,

and θ is the orientation relative to the global

axis.

The motion of the body is described by:

 (6)
where

represent the translational

velocities, and 𝜔 the angular velocity [8].

Pentru o deplasare stabilă, traiectoria corpului

trebuie să fie compatibilă cu traiectoriile

picioarelor - adică proiecția centrului de

greutate (CoG) să rămână în interiorul

poligonului de sprijin [2].

3. PID CONTROL ALGORITHM

Controlling a hexapod robot requires the

synchronization of two distinct levels:

1. Body Control – establishing the

global motion of the robot: position

(x,y) and orientation θ .

2. Joint Control – accurately

positioning each leg according to the

desired trajectories.

The PID (Proportional–Integral–Derivative)

algorithm is one of the most widely used and

effective control methods for moderately

nonlinear systems, such as legged robots [4].

This chapter presents the mathematical model

of the PID controller, tuning techniques, and

its integration into the hexapod control

system.

3.1 Mathematical model of the PID

controller

The PID controller generates the control

signal u(t) based on the error between the

desired value r(t) and the measured value y(t):

 (7)

The control signal is:

 (8)

where:

• Kp = proportional gain – reacts

instantly to the error;

• Ki = integral gain – eliminates steady-

state error;

• Kd = derivative gain – attenuates

oscillations and increases stability.

Discrete version (used in digital

controllers)

At a control frequency of 50–200 Hz:

 (9)

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 258

where T is sampling period.

3.2 Application of the PID Controller to the

Hexapod

The PID control is integrated at two levels:

3.2.1 Body-Level PID Controller

Objective: the robot must follow a global

trajectory defined by:

 (10)

The error in global coordinates:

 (11)

To avoid singularities, the errors are

transformed into the body frame:

 (12)

PID applied to each error:

 (13)

The result is a set of reference velocities

(υx,υy,ω) that are sent to the gait planner.

3.2.2 Joint-Level PID

For each leg:

 (14)

where the values are generated by the inverse

kinematics.

The error for each joint:

 (15)

The PID controller is applied:

 (16)

This generates the torque or position

command for the joint servomotors.

3.3 PID parameter tuning

Proper tuning of the PID parameters is

essential for stable locomotion.

There are three main methods:

3.3.1 Manual (Heuristic) Tuning

1. Increase Kp until oscillations appear.

2. Increase Kd to reduce the oscillations.

3. Increase Ki only as much as necessary

to eliminate the steady-state error.

Advantage: simple and fast.

Disadvantage: depends on user experience.

3.3.2 Ziegler–Nichols (ZN) Method

1. Set Ki = 0 and Kd = 0.

2. Gradually increase Kp until the system

reaches sustained oscillations →

obtain:

o Ku – ultimate (critical) gain,

o Tu – oscillation period.

Table ZN:

Tip control

P 0.50Ku – –

PI 0.45 Ku 1.2K_p/Tu –

PID 0.60 Ku 2Kp/ Tu KpTu /8

The ZN method is a standard approach in the

robotics control literature.

3.3.3 Adaptive PID tuning for a hexapod

robot

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 259

For uneven terrain, the PID gains can be

adjusted in real time:

 (17)

This method enables stable control even when

the load or terrain varies [3].

4. SOFTWARE ARCHITECTURE

This section presents in detail the software

architecture used for implementing PID

control of the hexapod robot, as well as the

results obtained in the simulation

environment. The main objective is to

validate the controller’s performance under

controlled conditions, prior to implementation

on real hardware.

//=============================== Gait ==================================

class TripodGait {
public:
 TripodGait(double cycle=0.6, double duty=0.6, double clearance=0.025, double stepLen=0.06)
 : T_(cycle), duty_(duty), clr_(clearance), step_(stepLen) {
 groupA_ = {1,4,5}; groupB_ = {2,3,6};
 }
 // phase in [0,1)
 double phase(int legId, double t) const {
 double tau = fmod(t, T_) / T_;
 if (groupB_.count(legId)) tau = fmod(tau + 0.5, 1.0);
 return tau;
 }
 // target foot point in leg local frame (simple nominal pattern)
 std::array<double,3> footTarget(int legId, double t, double vx_body) const {
 (void)vx_body; // keep simple; could scale step_ by vx_body
 double tau = phase(legId, t);
 const double stance = duty_;
 const double x_back = -step_/2.0, x_front = +step_/2.0;
 const double y_off = 0.0, z0 = 0.0;

 double x,y,z;
 if (tau < stance) {
 double s = tau / stance;
 x = x_front + (x_back - x_front) * s;
 y = y_off; z = z0;
 } else {
 double s = (tau - stance) / (1.0 - stance);
 // smoothstep quintic: 10s^3 - 15s^4 + 6s^5
 double s2=s*s, s3=s2*s, s4=s3*s, s5=s4*s;
 double blend = 10*s3 - 15*s4 + 6*s5;
 x = x_back + (x_front - x_back) * blend;
 y = y_off;
 z = z0 + clr_ * sin(PI * s); // arc over ground
 }
 return {x,y,z};
 }
private:
 double T_, duty_, clr_, step_;
 std::set<int> groupA_, groupB_;
};

//============================== Body Control ===========================

struct Pose2D { double x{0}, y{0}, th{0}; };
struct BodyCmd { double vx{0}, vy{0}, wz{0}; };

class BodyPID {
public:
 BodyPID(double dt) {
 PIDGains gx{1.2, 0.1, 0.3, 20.0, -0.25, 0.25, -0.5, 0.5};
 PIDGains gy{1.2, 0.1, 0.3, 20.0, -0.25, 0.25, -0.5, 0.5};
 PIDGains gt{2.0, 0.1, 0.2, 20.0, -1.2, 1.2, -0.5, 0.5};
 px_ = PID(gx, dt); py_ = PID(gy, dt); pth_ = PID(gt, dt);
 }
 BodyCmd compute(const Pose2D& cur, const Pose2D& ref) {
 double dx = ref.x - cur.x;
 double dy = ref.y - cur.y;
 double dth = wrap_pi(ref.th - cur.th);
 double c = cos(cur.th), s = sin(cur.th);
 double exb = c*dx + s*dy;
 double eyb = -s*dx + c*dy;
 return { px_.update(exb), py_.update(eyb), pth_.update(dth) };
 }
private:
 PID px_, py_, pth_;
};

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 260

//============================ Joint Control ============================
class LegJointPID {
public:
 LegJointPID(double dt) {
 // initial gains; tune for your platform
 pids_[0] = PID(PIDGains{6.0, 30.0, 0.03, 25.0, -2.0, 2.0, -0.2, 0.2}, dt); // coxa
 pids_[1] = PID(PIDGains{8.0, 40.0, 0.05, 25.0, -2.5, 2.5, -0.2, 0.2}, dt); // femur
 pids_[2] = PID(PIDGains{7.0, 35.0, 0.04, 25.0, -2.5, 2.5, -0.2, 0.2}, dt); // tibia
 }
 std::array<double,3> torque(const std::array<double,3>& q,
 const std::array<double,3>& qd) {
 std::array<double,3> u{};
 for (int i=0;i<3;i++) {
 double e = qd[i] - q[i];
 u[i] = pids_[i].update(e);
 }
 return u;
 }
private:
 std::array<PID,3> pids_;
};
//============================ Hexapod Controller =======================
class HexapodController {
public:
 explicit HexapodController(double dt=0.005) : dt_(dt), body_(dt), gait_() {
 geom_ = {0.05, 0.10, 0.12};
 limits_ = {
 {deg2rad(-60), deg2rad(60)},
 {deg2rad(-10), deg2rad(80)},
 {deg2rad(-130), deg2rad(-5)}
 };
 for (int i=1;i<=6;i++) {
 ik_[i] = std::make_unique<LegIK>(geom_, limits_);
 joints_[i] = std::make_unique<LegJointPID>(dt_);
 }
 // nominal mounts (if you later transform targets from body to leg frames)
 mountXY_ = {
 {1, {+0.10, +0.09}},
 {2, {+0.10, -0.09}},
 {3, { 0.00, +0.11}},
 {4, { 0.00, -0.11}},
 {5, {-0.10, +0.09}},
 {6, {-0.10, -0.09}},
 };
 }

 // ---- Provide pose from sensors or simulator ----
 void setPoseForSim(const Pose2D& p){ pose_ = p; }
 Pose2D readPose() const { return pose_; }

 // ---- Main control step ----
 void step(double t, const Pose2D& ref) {
 BodyCmd cmd = body_.compute(pose_, ref);

 // 1) (Optional) adjust gait using cmd (vx,vy,wz)
 // 2) For each leg: generate foot target, solve IK, compute torques, apply
 for (int leg=1; leg<=6; ++leg) {
 auto tgt = gait_.footTarget(leg, t, cmd.vx);
 auto qd = ik_[leg]->solve(tgt[0], tgt[1], tgt[2]);
 LegState st = readJointState(leg); // TODO: replace
 auto tau = joints_[leg]->torque(st.q, qd);
 applyJointTorque(leg, tau); // TODO: replace
 }

 // 3) Tiny body kinematics "sim" so the demo runs standalone
 integrateBody(cmd);
 }

private:
 // -------- Hardware/simulator hooks (replace for your system) --------
 void applyJointTorque(int leg, const std::array<double,3>& u) {

 (void)leg; (void)u;
 // TODO: send torques to drivers or physics engine
 }
 LegState readJointState(int leg) const {
 (void)leg;
 // TODO: read encoders; here we return zeros as a placeholder
 return {};
 }
 // ---

 void integrateBody(const BodyCmd& cmd) {
 // Integrate simple 2D body kinematics (world frame)
 double c = cos(pose_.th), s = sin(pose_.th);
 double dx = (cmd.vx*c - cmd.vy*s) * dt_;
 double dy = (cmd.vx*s + cmd.vy*c) * dt_;
 double dth= cmd.wz * dt_;
 pose_.x += dx; pose_.y += dy; pose_.th = wrap_pi(pose_.th + dth);
 }

 static double deg2rad(double d){ return d*PI/180.0; }

 double dt_;
 Pose2D pose_{};
 BodyPID body_;
 TripodGait gait_;
 LegGeom geom_;
 LegLimits limits_;
 std::map<int, std::unique_ptr<LegIK>> ik_;
 std::map<int, std::unique_ptr<LegJointPID>> joints_;
 std::map<int, std::array<double,2>> mountXY_;
};

//============================== Reference Trajectory ====================

static Pose2D refTrajectory(double t) {
 // 0..8s: +X (0.2 m/s), 8..16s: +Y, 16..20s: rotate to +90 deg
 if (t < 8.0) return {0.2*t, 0.0, 0.0};
 else if (t < 16.0) return {1.6, 0.2*(t-8.0), 0.0};
 else {
 double th = std::min(90.0, (t-16.0)*22.5);
 return {1.6, 1.6, th * PI/180.0};
 }
}

//================================= Main =================================

int main() {
 const double dt = 0.005; // 200 Hz
 HexapodController hex(dt);
 hex.setPoseForSim({0.0, 0.0, 0.0});

 auto t0 = chrono::steady_clock::now();
 double simT = 20.0;
 while (true) {
 auto now = chrono::steady_clock::now();
 double t = chrono::duration<double>(now - t0).count();
 if (t > simT) break;

 Pose2D ref = refTrajectory(t);
 hex.step(t, ref);

 // simple pacing (not hard RT)
 std::this_thread::sleep_for(std::chrono::milliseconds(4)); // ~250 Hz loop pacing
 }

 Pose2D p = hex.readPose();
 std::cout << "Final pose: x=" << p.x << " m, y=" << p.y
 << " m, th=" << (p.th*180.0/PI) << " deg\n";
 return 0;
}

5. CONCLUSIONS

Implementing PID control for a hexapod

robot represents a simple, robust, and efficient

solution for educational, academic, and proto-

industrial applications. By extending the

system with adaptive or predictive methods,

performance comparable to that of advanced

robots used in rough-terrain exploration can

be achieved.

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 261

Compared to P and PI control, PID control

is clearly superior for hexapod robots because

it:

• reduces tracking error,

• improves stability,

• ensures robustness against disturbances,

• maintains reasonable energy

consumption.

REFERENCES

[1] Corke, P. (2017). Robotics, Vision and

Control: Fundamental Algorithms in

MATLAB. Springer.

[2] Liu, Y., & Wang, J. (2018). “Gait

planning and trajectory control of a

hexapod robot.” International Journal of

Advanced Robotic Systems.

[3] Ryu, J., & Kim, D. (2020). “A study on

adaptive PID control for multi-legged

robots.” Mechanisms and Machine

Theory, Elsevier.

[4] Guo, Y., Li, H., & Sun, T. (2021). “PID

control for hexapod robots using body-

level trajectory tracking.” IEEE

Transactions on Robotics.

[5] Florin Grofu. “Educational system for

studying level control in a tank”, Fiability

& Durability / Fiabilitate si Durabilitate.

mai 2025, Vol. 35 Issue 1, pp 316-319.

[6] Ilie Borcosi, The control of a SUMO

robot, Analele UCB, Seria Inginerie,

nr.4/2017, ISSN 1842-4856, pag. 140-

144.

[7] Ionescu M., Using voice commands to

obtain expressive states for animatronic

structures, Fiabilitate si Durabilitate -

Fiability & Durability No 1/ 2022,

Editura “Academica Brâncuşi” , Târgu

Jiu, ISSN 1844 – 640X, Engineering

Series, pp 127-134.

[8] Siciliano, B., Sciavicco, L., Villani, L., &

Oriolo, G. (2010). Robotics: Modelling,

Planning and Control. Springer.

[9] McGhee, R. B., & Frank, A. A. (1968).

“On the stability properties of quadruped

and hexapod walking machines.”

Mathematical Biosciences.

[10] Grofu Florin, ”Control System For

Photovoltaic Panels Tracker” Revista de

Fiabilitate și Durabilitate Nr 1(21)/2018

Editura “Academica Brâncuşi” , Târgu

Jiu, ISSN 1844 – 640X Pg. 333-338

[11] Ilie Borcoși, THE MOVING OF A

ROBOT IN THE LABYRINTH, Annals

of the „Constantin Brancusi” University

of Targu Jiu, Engineering Series, No.

4/2016, pp. 120-122, ISSN 1842-4856.

[12] Ionescu, M., I Borcosi, N G Bizdoaca,

Voice reactive biomimetic structure, The

8th International Conference on

Advanced Concepts in Mechanical

Engineering - ACME 2018, organized by

Mechanical Engineering Faculty, in the

"Gheorghe Asachi" Technical University

of Iasi, Romania, June 07 - 08, 2018,

pp.457-466, WOS:000467443600081.

https://www.proceedings.com/content/04

2/042496webtoc.pdf

