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DEVELOPMENT OF AN AUTOMATIC TEXT ANALYSIS APPLICATION
USING C#
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ABSTRACT: The paper presents the development of a text analyzer implemented in C#, designed for the automated
processing of Romanian-language texts. The system provides key statistics such as the total number of characters,
words, sentences, the average word length, and word frequency. The tool is built using Windows Forms technology and
integrates regular expressions for linguistic processing, following methodologies established in the relevant literature
[1], [2]. The system architecture, the algorithms employed, experimental results, and future development directions are

also presented.
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1. INTRODUCTION

Automatic text analysis is a fundamental
component of natural language processing
(NLP), with applications in research,
education, the legal domain, journalism, and
digital marketing. The massive growth of
textual content requires tools capable of
extracting relevant information quickly and
efficiently. According to Jurafsky & Martin
[1], statistical analysis serves as a preliminary
stage for advanced NLP models.

In the absence of customizable desktop
tools, many existing applications rely on
online platforms, where text confidentiality
becomes problematic. A local tool provides
flexibility, control, and opportunities for
future expansion, as recommended in the
works of Manning & Schiitze [2].

2. LITERATURE REVIEW

Modern NLP systems—such as NLTK and
spaCy—are widely used in both academic and
industrial environments [3][4]. These tools
provide tokenization, part-of-speech tagging,
semantic  analysis, and word vector
generation. However, they can be difficult for
the general public to use.
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Web-based tools offer limited statistics and
raise security concerns. Studies in corpus
linguistics [5] and text classification [6]
highlight the importance of local data
preprocessing, which makes a desktop
analyzer extremely valuable.

The task of teaching and learning
algorithms represents one of the main
challenges in the computer science education
community, mainly due to the complexity of
intuitively understanding how they work [7].

2.1. Evolution and Design of C#

Visual C# is the primary object-oriented
programming  language developed by
Microsoft for the .NET platform, introduced
in 2000 as part of the .NET Framework
initiative. C# was designed to combine the
simplicity of high-level languages with the
power and control of modern programming
languages, offering advanced support for safe
coding  practices, automatic = memory
management, and static typing.

The official documentation describes C# as
a “modern, simple, powerful, and productive”
language, intended for the development of
Windows, web, cloud, and mobile
applications [8].
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The language is part of a broader
ecosystem integrated into the Visual Studio
development environment. Visual Studio
provides a compiler, debugging tools, a visual
designer, and support for multi-layer projects,
making C# a preferred choice for developers
building enterprise applications. According to
Microsoft, the .NET platform and Visual C#
were designed to promote interoperability,
scalability, and the reuse of software
components [8], [9].

2.2. Core Features and Advantages of
Visual C#

Visual C# is based on the object-oriented
programming (OOP) paradigm, adopting
concepts such as inheritance, encapsulation,
polymorphism, and abstraction—fundamental
principles shared by major languages like
Java and C++ [10]. Additionally, C#
introduces modern extensions such as events,

delegates, lambda expressions, LINQ
(Language Integrated Query), generics, and
async/await programming, all of which

facilitate the development of more expressive
and robust code [8]. Another major advantage
of the C# language is its integration with the
Common Language Runtime (CLR), which
enables code execution in a controlled
environment, independent of the underlying
physical platform, providing automatic
memory management and protection against
illegal memory access errors [9]. This
approach makes it safer and more efficient
compared to older languages that lack a
managed runtime.

Regarding  graphical user interface
development, Visual C# offers native support
for Windows Forms, WPF, and ASP.NET,
being widely used in educational and
industrial environments for rapid prototyping
and desktop application development [8],
[11].

The evolution of the language continues
steadily, with each new version introducing
additional functionalities such as pattern
matching, nullable reference types, and record
types, in line with community
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recommendations and Microsoft’s strategic
direction [8].

2.3. Educational Aspects and Learning
Visual C#

Teaching and learning Visual C# has been
thoroughly examined within educational
research. Recognized for its clarity and
intuitive structure, C# is frequently selected
for both introductory programming courses
and for teaching advanced topics, including
object-oriented principles, data structures, and
software design patterns.

Regarding accessibility, several studies
indicate that C# is well-suited for beginners
due to its clean, readable syntax and the
availability of robust standard libraries [12].

An analysis in the paper [13] attempts to
investigate the ways in which the use of open-
source Al tools can modify and influence the
educational activities of students in technical
universities.

In contrast with languages that feature more
complex syntactic rules, such as C++, C#

provides an effective balance between
simplicity and professional-level
functionality, making it a strong and

adaptable choice for academic instruction.

3. CREATING AN AUTOMATIC
TEXT ANALYSIS
APPLICATION USING C#

By using the .NET platform and the C#
language, the application enables fast and
efficient text processing, providing users with
relevant statistics such as the total number of
words, sentences, term frequency, and lexical
distribution.The implementation of the
graphical interface in Windows Forms
facilitates access for users without advanced
technical knowledge, allowing text analysis
through an intuitive interaction. .NET regular
expressions and LINQ components are used
for tokenization and aggregation, ensuring
accurate and high-performance processing.

Overall, the development of such an
application demonstrates the versatility of the
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C# language and its relevance in projects
focused on the automatic analysis of natural
language.

The source code of the created application
is presented below. It contains the following
functions regarding text analysis: counting the
number of words, characters, sentences, lines,
average word length, average words per
sentence, but also the 20 most common
words.

using System;

using System.Collections.Generic;
using System.10;

using System.Ling;

using System. Text.RegularExpressions;
using System. Windows.Forms;

namespace TextAnalyzer

public partial class FormMain : Form
{
public FormMain()
{
TnitializeComponent();

J

private void bnAnalyze Click(object sender, EventArgs ¢)
{

string text = txtInput. Text;

if (string IsNullOrWhiteSpace(text))
{
MessageBox.Show("Introduceti sau incrcati un text pentru analiza.",
"Atentie", MessageBoxButtons.OK, MessageBoxlcon Information);
return;

}

AnalyzeText(text);

J

private void AnalyzeText(string text)
{

|/ Caractere

int charCount = text.Length;

I/ Linii (numéram doar liniile non-goale)

var lines = text
Split(new(] { "rin","\n" }, StringSplitOptions.None)
Where(l =>!string IsNullOrWhiteSpace())
ToList();

int lineCount = lines. Count;

/ Cuvinte (folosim regex pe litere)
var wordMatches = Regex Matches(text. ToLower(), @"\p{L}+");
List<string> words = wordMatches
Cast<Mateh>()
Select(m =>m.Value)
ToList();
int wordCount = words. Count;

1/ Propozitii (split dupa. ! ?)

var sentenceParts = Regex. Split(text, @"[\.\?}+")
Select(s =>.Trim()
Where(s => Istring IsNull OrWhiteSpace(s))
ToList();

int sentenceCount = sentenceParts. Count;

1/ Media lungimii cuvintelor

double avgWordLen = wordCount > 0
7 words.Average(w => w.Length)
200
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I/ Media cuvintelor pe propozitie

double avgWordsPerSentence = sentenceCount > )
7 (double)wordCount / sentenceCount
00,

I Actualizim etichetele
[blCharsValue Text = charCount. ToString();
[blWordsValue. Text = wordCount. ToString( ;
[blLinesValue. Text = lineCount.ToString();
[blSentencesValue. Text = sentenceCount ToString ;
[blAvgWordLenValue.Text = avgWordLen ToString("0.00");

[blAvgWordsPerSentenceValue. Text = avgWordsPerSentence. ToString("0.00");

I/ Top cuvinte
UpdateTopWords(words);
J

private void UpdateTopWords(List<string> words)

{
[vTopWords.ltems.Clear();

if (words.Count == ()
retum;

var top = words
GroupBy(w=>w)
Select(g =>new { Word = g.Key, Count = g Count() })
OrderByDescending(x => x.Count)
ThenBy(x=>xWord)
Take(20)
ToList();

forcach (var item in top)
{
var li=new ListViewttem(item. Word);
[ Subltems Add(item.Count ToString());
IvTopWords.Jtems. Add i)
J
}

private void btnClear Click(object sender, EventArgs e)
{

{xtinput Clear();

IvTopWords Jtems.Clear();

[bICharsVaue. Text ="0";
[b[WordsValue.Text="0",
[bILingsValue. Text="0",
[b1SentencesValue Text ="0",
[blAvgWordLenValue Text="0";
[blAvgWordsPerSentenceValue. Text="0",

J

private void btnLoad Click(object sender, EventArgs ¢)

{
using (var ofd = new OpenFileDialog())

ofd Filter="Text files (*.txt)* txf AL fles (* ¥)[*.*";
oft Title = "Deschide fgie text"

if (ofd ShowDialog() = DialogResult OK)

{
y
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{
string text = File ReadAllText(ofd FileName);

txtlnput. Text = text;

J

catch (Exception ex)
f
s
MessageBox.Show("Eroare la citirea fisierului-\rin" + ex Message,
"Eroare", MessageBoxButtons.OK, MessageBoxleon Error);
}
J
}
J

private void binSaveReport_Click(object sender, EventArgs ¢)
[

1
I/ Genereaz un mic raport text cu rezultatele

string report = GenerateReport);
using (var sfd = new SaveFileDialog())

sfd Filter = "Text files (*.txt)[*.txt/All files (*.%)[*.*";
sfd.Title = "Salveaz raportul';
sfd.FileName = "RaportAnalizaTexttxt";

if (sfd ShowDialog() = DialogResult. 0K)

{
§

y

{
File. WriteAllText(sfd FileName, report);
MessageBox.Show("Raport salvat cu succes.", "Info",
MessageBoxButtons. 0K, MessageBoxlcon Information);

J

catch (Exception ex)

\

MessageBox.Show("Eroare la salvarea raportului:'rln" + ex Message,

"Eroare", MessageBoxButtons.OK, MessageBoxleon Error);

private string GenerateReport()
{
refum

"Raport analiz textrin" +
———————————————————— rin'rn” +
§"Caractere: {[blCharsValue. Text}rin" +
§"Cuvinte: {1bIWordsValue. Text} rn" +
§"Linii: {IblLinesValue. Text\rin" +
$"Propozitii: {IbISentencesValue. Text} rin" +
§"Lungime medie cuvant; {IblAvgWordLenValue. Text\rn" +

§"Cuvinte/propozitie (medie): {IblAvgWordsPerSentenceValue Text) rinirin" +

"Top cuvinte:\rin" +

string Join("\rin", IvTopWords.tems
Cast<ListViewltem>()
Select(i=>$"{i.Text}: {i.Subltems1].Text}"));
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Figure 1 shows the interface created in
Visual Studio, containing 4 buttons, a window
where the text to be analyzed is entered, a
window where details about the analyzed text
will appear, and several labels with details
about the number of words, sentences,
characters, etc.

Figure 2 shows the result generated by the
application for the given text to be analyzed.
The application provides information
regarding: the number of characters in the
text, the number of words, the number of lines
(they must have the . sign at the end), the
average length of characters/word, the
average length of words / sentence.

Figure 3 shows how the application
provides us with a report that we can save in a
text file with all the related details (number of
words, number of lines, number of characters,
frequency of occurrence of certain words,
etc.).
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4. CONCLUSIONS

The paper demonstrates that using C# and
WinForms, an efficient, easy-to-use, fast and
extensible text analysis tool can be developed.
The system represents a solid starting point
for advanced natural language processing
applications.

The application can be used in:

* academia

* writing and proofreading

* journalism

» training for advanced NLP analysis.
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