
Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 262

DEVELOPMENT OF AN AUTOMATIC TEXT ANALYSIS APPLICATION

USING C#

Gîlcă Gheorghe, Lecturer Phd., “Constantin Brâncuși” University from Târgu Jiu,

ROMANIA

ABSTRACT: The paper presents the development of a text analyzer implemented in C#, designed for the automated

processing of Romanian-language texts. The system provides key statistics such as the total number of characters,

words, sentences, the average word length, and word frequency. The tool is built using Windows Forms technology and

integrates regular expressions for linguistic processing, following methodologies established in the relevant literature

[1], [2]. The system architecture, the algorithms employed, experimental results, and future development directions are

also presented.

KEY WORDS: text analysis, C#, WinForms, textual statistics, Regex, word frequency

1. INTRODUCTION

Automatic text analysis is a fundamental

component of natural language processing

(NLP), with applications in research,

education, the legal domain, journalism, and

digital marketing. The massive growth of

textual content requires tools capable of

extracting relevant information quickly and

efficiently. According to Jurafsky & Martin

[1], statistical analysis serves as a preliminary

stage for advanced NLP models.

In the absence of customizable desktop

tools, many existing applications rely on

online platforms, where text confidentiality

becomes problematic. A local tool provides

flexibility, control, and opportunities for

future expansion, as recommended in the

works of Manning & Schütze [2].

2. LITERATURE REVIEW

Modern NLP systems—such as NLTK and

spaCy—are widely used in both academic and

industrial environments [3][4]. These tools

provide tokenization, part-of-speech tagging,

semantic analysis, and word vector

generation. However, they can be difficult for

the general public to use.

Web-based tools offer limited statistics and

raise security concerns. Studies in corpus

linguistics [5] and text classification [6]

highlight the importance of local data

preprocessing, which makes a desktop

analyzer extremely valuable.

The task of teaching and learning

algorithms represents one of the main

challenges in the computer science education

community, mainly due to the complexity of

intuitively understanding how they work [7].

2.1. Evolution and Design of C#

Visual C# is the primary object-oriented

programming language developed by

Microsoft for the .NET platform, introduced

in 2000 as part of the .NET Framework

initiative. C# was designed to combine the

simplicity of high-level languages with the

power and control of modern programming

languages, offering advanced support for safe

coding practices, automatic memory

management, and static typing.

The official documentation describes C# as

a “modern, simple, powerful, and productive”

language, intended for the development of

Windows, web, cloud, and mobile

applications [8].

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 263

The language is part of a broader

ecosystem integrated into the Visual Studio

development environment. Visual Studio

provides a compiler, debugging tools, a visual

designer, and support for multi-layer projects,

making C# a preferred choice for developers

building enterprise applications. According to

Microsoft, the .NET platform and Visual C#

were designed to promote interoperability,

scalability, and the reuse of software

components [8], [9].

2.2. Core Features and Advantages of

Visual C#

Visual C# is based on the object-oriented

programming (OOP) paradigm, adopting

concepts such as inheritance, encapsulation,

polymorphism, and abstraction—fundamental

principles shared by major languages like

Java and C++ [10]. Additionally, C#

introduces modern extensions such as events,

delegates, lambda expressions, LINQ

(Language Integrated Query), generics, and

async/await programming, all of which

facilitate the development of more expressive

and robust code [8]. Another major advantage

of the C# language is its integration with the

Common Language Runtime (CLR), which

enables code execution in a controlled

environment, independent of the underlying

physical platform, providing automatic

memory management and protection against

illegal memory access errors [9]. This

approach makes it safer and more efficient

compared to older languages that lack a

managed runtime.

Regarding graphical user interface

development, Visual C# offers native support

for Windows Forms, WPF, and ASP.NET,

being widely used in educational and

industrial environments for rapid prototyping

and desktop application development [8],

[11].

The evolution of the language continues

steadily, with each new version introducing

additional functionalities such as pattern

matching, nullable reference types, and record

types, in line with community

recommendations and Microsoft’s strategic

direction [8].

2.3. Educational Aspects and Learning

Visual C#

Teaching and learning Visual C# has been

thoroughly examined within educational

research. Recognized for its clarity and

intuitive structure, C# is frequently selected

for both introductory programming courses

and for teaching advanced topics, including

object-oriented principles, data structures, and

software design patterns.

Regarding accessibility, several studies

indicate that C# is well-suited for beginners

due to its clean, readable syntax and the

availability of robust standard libraries [12].

An analysis in the paper [13] attempts to

investigate the ways in which the use of open-

source AI tools can modify and influence the

educational activities of students in technical

universities.

In contrast with languages that feature more

complex syntactic rules, such as C++, C#

provides an effective balance between

simplicity and professional-level

functionality, making it a strong and

adaptable choice for academic instruction.

3. CREATING AN AUTOMATIC

TEXT ANALYSIS

APPLICATION USING C#

By using the .NET platform and the C#

language, the application enables fast and

efficient text processing, providing users with

relevant statistics such as the total number of

words, sentences, term frequency, and lexical

distribution.The implementation of the

graphical interface in Windows Forms

facilitates access for users without advanced

technical knowledge, allowing text analysis

through an intuitive interaction. .NET regular

expressions and LINQ components are used

for tokenization and aggregation, ensuring

accurate and high-performance processing.

Overall, the development of such an

application demonstrates the versatility of the

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 264

C# language and its relevance in projects

focused on the automatic analysis of natural

language.

The source code of the created application

is presented below. It contains the following

functions regarding text analysis: counting the

number of words, characters, sentences, lines,

average word length, average words per

sentence, but also the 20 most common

words.

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Text.RegularExpressions;

using System.Windows.Forms;

namespace TextAnalyzer

{

 public partial class FormMain : Form

 {

 public FormMain()

 {

 InitializeComponent();

 }

 private void btnAnalyze_Click(object sender, EventArgs e)

 {

 string text = txtInput.Text;

 if (string.IsNullOrWhiteSpace(text))

 {

 MessageBox.Show("Introduceți sau încărcați un text pentru analiză.",

 "Atenție", MessageBoxButtons.OK, MessageBoxIcon.Information);

 return;

 }

 AnalyzeText(text);

 }

 private void AnalyzeText(string text)

 {

 // Caractere

 int charCount = text.Length;

 // Linii (numărăm doar liniile non-goale)

 var lines = text

 .Split(new[] { "\r\n", "\n" }, StringSplitOptions.None)

 .Where(l => !string.IsNullOrWhiteSpace(l))

 .ToList();

 int lineCount = lines.Count;

 // Cuvinte (folosim regex pe litere)

 var wordMatches = Regex.Matches(text.ToLower(), @"\p{L}+");

 List<string> words = wordMatches

 .Cast<Match>()

 .Select(m => m.Value)

 .ToList();

 int wordCount = words.Count;

 // Propoziții (split după . ! ?)

 var sentenceParts = Regex.Split(text, @"[\.!\?]+")

 .Select(s => s.Trim())

 .Where(s => !string.IsNullOrWhiteSpace(s))

 .ToList();

 int sentenceCount = sentenceParts.Count;

 // Media lungimii cuvintelor

 double avgWordLen = wordCount > 0

 ? words.Average(w => w.Length)

 : 0.0;

 // Media cuvintelor pe propoziție

 double avgWordsPerSentence = sentenceCount > 0

 ? (double)wordCount / sentenceCount

 : 0.0;

 // Actualizăm etichetele

 lblCharsValue.Text = charCount.ToString();

 lblWordsValue.Text = wordCount.ToString();

 lblLinesValue.Text = lineCount.ToString();

 lblSentencesValue.Text = sentenceCount.ToString();

 lblAvgWordLenValue.Text = avgWordLen.ToString("0.00");

 lblAvgWordsPerSentenceValue.Text = avgWordsPerSentence.ToString("0.00");

 // Top cuvinte

 UpdateTopWords(words);

 }

 private void UpdateTopWords(List<string> words)

 {

 lvTopWords.Items.Clear();

 if (words.Count == 0)

 return;

 var top = words

 .GroupBy(w => w)

 .Select(g => new { Word = g.Key, Count = g.Count() })

 .OrderByDescending(x => x.Count)

 .ThenBy(x => x.Word)

 .Take(20)

 .ToList();

 foreach (var item in top)

 {

 var li = new ListViewItem(item.Word);

 li.SubItems.Add(item.Count.ToString());

 lvTopWords.Items.Add(li);

 }

 }

 private void btnClear_Click(object sender, EventArgs e)

 {

 txtInput.Clear();

 lvTopWords.Items.Clear();

 lblCharsValue.Text = "0";

 lblWordsValue.Text = "0";

 lblLinesValue.Text = "0";

 lblSentencesValue.Text = "0";

 lblAvgWordLenValue.Text = "0";

 lblAvgWordsPerSentenceValue.Text = "0";

 }

 private void btnLoad_Click(object sender, EventArgs e)

 {

 using (var ofd = new OpenFileDialog())

 {

 ofd.Filter = "Text files (*.txt)|*.txt|All files (*.*)|*.*";

 ofd.Title = "Deschide fișier text";

 if (ofd.ShowDialog() == DialogResult.OK)

 {

 try

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 265

 {

 string text = File.ReadAllText(ofd.FileName);

 txtInput.Text = text;

 }

 catch (Exception ex)

 {

 MessageBox.Show("Eroare la citirea fișierului:\r\n" + ex.Message,

 "Eroare", MessageBoxButtons.OK, MessageBoxIcon.Error);

 }

 }

 }

 }

 private void btnSaveReport_Click(object sender, EventArgs e)

 {

 // Generează un mic raport text cu rezultatele

 string report = GenerateReport();

 using (var sfd = new SaveFileDialog())

 {

 sfd.Filter = "Text files (*.txt)|*.txt|All files (*.*)|*.*";

 sfd.Title = "Salvează raportul";

 sfd.FileName = "RaportAnalizaText.txt";

 if (sfd.ShowDialog() == DialogResult.OK)

 {

 try

 {

 File.WriteAllText(sfd.FileName, report);

 MessageBox.Show("Raport salvat cu succes.", "Info",

 MessageBoxButtons.OK, MessageBoxIcon.Information);

 }

 catch (Exception ex)

 {

 MessageBox.Show("Eroare la salvarea raportului:\r\n" + ex.Message,

 "Eroare", MessageBoxButtons.OK, MessageBoxIcon.Error);

 }

 }

 }

 }

 private string GenerateReport()

 {

 return

 "Raport analiză text\r\n" +

 "====================\r\n\r\n" +

 $"Caractere: {lblCharsValue.Text}\r\n" +

 $"Cuvinte: {lblWordsValue.Text}\r\n" +

 $"Linii: {lblLinesValue.Text}\r\n" +

 $"Propoziții: {lblSentencesValue.Text}\r\n" +

 $"Lungime medie cuvânt: {lblAvgWordLenValue.Text}\r\n" +

 $"Cuvinte/propoziție (medie): {lblAvgWordsPerSentenceValue.Text}\r\n\r\n" +

 "Top cuvinte:\r\n" +

 string.Join("\r\n", lvTopWords.Items

 .Cast<ListViewItem>()

 .Select(i => $"{i.Text}: {i.SubItems[1].Text}"));

 }

 }

}

Figure 1 shows the interface created in

Visual Studio, containing 4 buttons, a window

where the text to be analyzed is entered, a

window where details about the analyzed text

will appear, and several labels with details

about the number of words, sentences,

characters, etc.

Figure 2 shows the result generated by the

application for the given text to be analyzed.

The application provides information

regarding: the number of characters in the

text, the number of words, the number of lines

(they must have the . sign at the end), the

average length of characters/word, the

average length of words / sentence.

Figure 3 shows how the application

provides us with a report that we can save in a

text file with all the related details (number of

words, number of lines, number of characters,

frequency of occurrence of certain words,

etc.).

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 266

Figure 1. Design form of the application

Figure 2. Results generated by the application after analyzing the given text

Figure 3. Saving the generated report

Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

 267

4. CONCLUSIONS

The paper demonstrates that using C# and

WinForms, an efficient, easy-to-use, fast and

extensible text analysis tool can be developed.

The system represents a solid starting point

for advanced natural language processing

applications.

The application can be used in:

• academia

• writing and proofreading

• journalism

• training for advanced NLP analysis.

REFERENCES

[1] D. Jurafsky and J. H. Martin, Speech and

Language Processing, 3rd ed.

[Online]. Available:

https://web.stanford.edu/~jurafsky/slp3/

[2] C. D. Manning and H. Schütze,

Foundations of Statistical Natural

Language Processing. Cambridge, MA:

MIT Press, 1999.

[3] S. Bird, E. Klein, and E. Loper, Natural

Language Processing with Python.

O’Reilly Media, 2009.

[4] spaCy Documentation, “Industrial-Strength

Natural Language Processing in Python.”

[Online]. Available: https://spacy.io

[5] T. McEnery and A. Hardie, Corpus

Linguistics: Method, Theory and Practice.

Cambridge: Cambridge University Press,

2012.

[6] F. Sebastiani, “Machine Learning in

Automated Text Categorization,” ACM

Computing Surveys, vol. 34, no. 1, pp. 1–

47, 2002.

[7] Adrian Runceanu, Mihaela-Ana Runceanu,

“Challenges in teaching programming and

algorithms”, INTED2016 Proceedings,

10th International Technology, Education

and Development Conference Valencia,

Spain. 7-9 March, 2016, ISBN: 978-84-

608-5617-7 / ISSN: 2340-1079, Pages:

4120-4126 DOI:

10.21125/inted.2016.2003,

WOS:000402738404019

[8] Microsoft Docs, “C# Programming

Guide,” 2024. [Online]. Available:

https://learn.microsoft.com/dotnet/csharp/

[9] Microsoft Docs, “.NET Architecture,”

2024. [Online]. Available:

https://learn.microsoft.com/dotnet/standard

/

[10] B. Eckel, Thinking in C#, Prentice Hall,

2003.

[11] Microsoft Docs, “Windows Forms

Overview,” 2024. [Online]. Available:

https://learn.microsoft.com/dotnet/desktop/

winforms/

[12] Kölling, M., “Teaching introductory

programming: a new approach using BlueJ

and C#,” Journal of Computing Sciences in

Colleges, 2015.

[13] Adrian Runceanu, “The role of artificial

intelligence tools for teaching in technical

universities”, EDULEARN25 Proceedings,

pp. 6900-6905, ISBN: 978-84-09-74218-9,

ISSN: 2340-1117, doi:

10.21125/edulearn.2025.1690, Conference

name: 17th International Conference on

Education and New Learning

Technologies, 30 June-2 July, 2025,

Location: Palma, Spain

https://web.stanford.edu/~jurafsky/slp3/
https://spacy.io/
https://learn.microsoft.com/dotnet/desktop/winforms/
https://learn.microsoft.com/dotnet/desktop/winforms/

