Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

DEVELOPMENT OF AN AUTOMATIC TEXT ANALYSIS APPLICATION
USING C#

Gilca Gheorghe, Lecturer Phd., “Constantin Brdancusi” University from Tdargu Jiu,
ROMANIA

ABSTRACT: The paper presents the development of a text analyzer implemented in C#, designed for the automated
processing of Romanian-language texts. The system provides key statistics such as the total number of characters,
words, sentences, the average word length, and word frequency. The tool is built using Windows Forms technology and
integrates regular expressions for linguistic processing, following methodologies established in the relevant literature
[1], [2]. The system architecture, the algorithms employed, experimental results, and future development directions are

also presented.

KEY WORDS: text analysis, C#, WinForms, textual statistics, Regex, word frequency

1. INTRODUCTION

Automatic text analysis is a fundamental
component of natural language processing
(NLP), with applications in research,
education, the legal domain, journalism, and
digital marketing. The massive growth of
textual content requires tools capable of
extracting relevant information quickly and
efficiently. According to Jurafsky & Martin
[1], statistical analysis serves as a preliminary
stage for advanced NLP models.

In the absence of customizable desktop
tools, many existing applications rely on
online platforms, where text confidentiality
becomes problematic. A local tool provides
flexibility, control, and opportunities for
future expansion, as recommended in the
works of Manning & Schiitze [2].

2. LITERATURE REVIEW

Modern NLP systems—such as NLTK and
spaCy—are widely used in both academic and
industrial environments [3][4]. These tools
provide tokenization, part-of-speech tagging,
semantic analysis, and word vector
generation. However, they can be difficult for
the general public to use.

262

Web-based tools offer limited statistics and
raise security concerns. Studies in corpus
linguistics [5] and text classification [6]
highlight the importance of local data
preprocessing, which makes a desktop
analyzer extremely valuable.

The task of teaching and learning
algorithms represents one of the main
challenges in the computer science education
community, mainly due to the complexity of
intuitively understanding how they work [7].

2.1. Evolution and Design of C#

Visual C# is the primary object-oriented
programming language developed by
Microsoft for the .NET platform, introduced
in 2000 as part of the .NET Framework
initiative. C# was designed to combine the
simplicity of high-level languages with the
power and control of modern programming
languages, offering advanced support for safe
coding practices, automatic = memory
management, and static typing.

The official documentation describes C# as
a “modern, simple, powerful, and productive”
language, intended for the development of
Windows, web, cloud, and mobile
applications [8].

Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

The language is part of a broader
ecosystem integrated into the Visual Studio
development environment. Visual Studio
provides a compiler, debugging tools, a visual
designer, and support for multi-layer projects,
making C# a preferred choice for developers
building enterprise applications. According to
Microsoft, the .NET platform and Visual C#
were designed to promote interoperability,
scalability, and the reuse of software
components [8], [9].

2.2. Core Features and Advantages of
Visual C#

Visual C# is based on the object-oriented
programming (OOP) paradigm, adopting
concepts such as inheritance, encapsulation,
polymorphism, and abstraction—fundamental
principles shared by major languages like
Java and C++ [10]. Additionally, C#
introduces modern extensions such as events,

delegates, lambda expressions, LINQ
(Language Integrated Query), generics, and
async/await programming, all of which

facilitate the development of more expressive
and robust code [8]. Another major advantage
of the C# language is its integration with the
Common Language Runtime (CLR), which
enables code execution in a controlled
environment, independent of the underlying
physical platform, providing automatic
memory management and protection against
illegal memory access errors [9]. This
approach makes it safer and more efficient
compared to older languages that lack a
managed runtime.

Regarding graphical user interface
development, Visual C# offers native support
for Windows Forms, WPF, and ASP.NET,
being widely used in educational and
industrial environments for rapid prototyping
and desktop application development [8],
[11].

The evolution of the language continues
steadily, with each new version introducing
additional functionalities such as pattern
matching, nullable reference types, and record
types, in line with community

263

recommendations and Microsoft’s strategic
direction [8].

2.3. Educational Aspects and Learning
Visual C#

Teaching and learning Visual C# has been
thoroughly examined within educational
research. Recognized for its clarity and
intuitive structure, C# is frequently selected
for both introductory programming courses
and for teaching advanced topics, including
object-oriented principles, data structures, and
software design patterns.

Regarding accessibility, several studies
indicate that C# is well-suited for beginners
due to its clean, readable syntax and the
availability of robust standard libraries [12].

An analysis in the paper [13] attempts to
investigate the ways in which the use of open-
source Al tools can modify and influence the
educational activities of students in technical
universities.

In contrast with languages that feature more
complex syntactic rules, such as C++, C#

provides an effective balance between
simplicity and professional-level
functionality, making it a strong and

adaptable choice for academic instruction.

3. CREATING AN AUTOMATIC
TEXT ANALYSIS
APPLICATION USING C#

By using the .NET platform and the C#
language, the application enables fast and
efficient text processing, providing users with
relevant statistics such as the total number of
words, sentences, term frequency, and lexical
distribution.The implementation of the
graphical interface in Windows Forms
facilitates access for users without advanced
technical knowledge, allowing text analysis
through an intuitive interaction. .NET regular
expressions and LINQ components are used
for tokenization and aggregation, ensuring
accurate and high-performance processing.

Overall, the development of such an
application demonstrates the versatility of the

Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

C# language and its relevance in projects
focused on the automatic analysis of natural
language.

The source code of the created application
is presented below. It contains the following
functions regarding text analysis: counting the
number of words, characters, sentences, lines,
average word length, average words per
sentence, but also the 20 most common
words.

using System;

using System.Collections.Generic;
using System.10;

using System.Ling;

using System. Text.RegularExpressions;
using System. Windows.Forms;

namespace TextAnalyzer

public partial class FormMain : Form
{
public FormMain()
{
TnitializeComponent();

J

private void bnAnalyze Click(object sender, EventArgs ¢)
{

string text = txtInput. Text;

if (string IsNullOrWhiteSpace(text))
{
MessageBox.Show("Introduceti sau incrcati un text pentru analiza.",
"Atentie", MessageBoxButtons.OK, MessageBoxlcon Information);
return;

}

AnalyzeText(text);

J

private void AnalyzeText(string text)
{

|/ Caractere

int charCount = text.Length;

I/ Linii (numéram doar liniile non-goale)

var lines = text
Split(new(] { "rin","\n" }, StringSplitOptions.None)
Where(l =>!string IsNullOrWhiteSpace())
ToList();

int lineCount = lines. Count;

/ Cuvinte (folosim regex pe litere)
var wordMatches = Regex Matches(text. ToLower(), @"\p{L}+");
List<string> words = wordMatches
Cast<Mateh>()
Select(m =>m.Value)
ToList();
int wordCount = words. Count;

1/ Propozitii (split dupa. ! ?)

var sentenceParts = Regex. Split(text, @"[\.\?}+")
Select(s =>.Trim()
Where(s => Istring IsNull OrWhiteSpace(s))
ToList();

int sentenceCount = sentenceParts. Count;

1/ Media lungimii cuvintelor

double avgWordLen = wordCount > 0
7 words.Average(w => w.Length)
200

264

I/ Media cuvintelor pe propozitie

double avgWordsPerSentence = sentenceCount >)
7 (double)wordCount / sentenceCount
00,

I Actualizim etichetele
[blCharsValue Text = charCount. ToString();
[blWordsValue. Text = wordCount. ToString(;
[blLinesValue. Text = lineCount.ToString();
[blSentencesValue. Text = sentenceCount ToString ;
[blAvgWordLenValue.Text = avgWordLen ToString("0.00");

[blAvgWordsPerSentenceValue. Text = avgWordsPerSentence. ToString("0.00");

I/ Top cuvinte
UpdateTopWords(words);
J

private void UpdateTopWords(List<string> words)

{
[vTopWords.ltems.Clear();

if (words.Count == ()
retum;

var top = words
GroupBy(w=>w)
Select(g =>new { Word = g.Key, Count = g Count() })
OrderByDescending(x => x.Count)
ThenBy(x=>xWord)
Take(20)
ToList();

forcach (var item in top)
{
var li=new ListViewttem(item. Word);
[Subltems Add(item.Count ToString());
IvTopWords.Jtems. Add i)
J
}

private void btnClear Click(object sender, EventArgs e)
{

{xtinput Clear();

IvTopWords Jtems.Clear();

[bICharsVaue. Text ="0";
[b[WordsValue.Text="0",
[bILingsValue. Text="0",
[b1SentencesValue Text ="0",
[blAvgWordLenValue Text="0";
[blAvgWordsPerSentenceValue. Text="0",

J

private void btnLoad Click(object sender, EventArgs ¢)

{
using (var ofd = new OpenFileDialog())

ofd Filter="Text files (*.txt)* txf AL fles (* ¥)[*.*";
oft Title = "Deschide fgie text"

if (ofd ShowDialog() = DialogResult OK)

{
y

Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

{
string text = File ReadAllText(ofd FileName);

txtlnput. Text = text;

J

catch (Exception ex)
f
s
MessageBox.Show("Eroare la citirea fisierului-\rin" + ex Message,
"Eroare", MessageBoxButtons.OK, MessageBoxleon Error);
}
J
}
J

private void binSaveReport_Click(object sender, EventArgs ¢)
[

1
I/ Genereaz un mic raport text cu rezultatele

string report = GenerateReport);
using (var sfd = new SaveFileDialog())

sfd Filter = "Text files (*.txt)[*.txt/All files (*.%)[*.*";
sfd.Title = "Salveaz raportul';
sfd.FileName = "RaportAnalizaTexttxt";

if (sfd ShowDialog() = DialogResult. 0K)

{
§

y

{
File. WriteAllText(sfd FileName, report);
MessageBox.Show("Raport salvat cu succes.", "Info",
MessageBoxButtons. 0K, MessageBoxlcon Information);

J

catch (Exception ex)

\

MessageBox.Show("Eroare la salvarea raportului:'rln" + ex Message,

"Eroare", MessageBoxButtons.OK, MessageBoxleon Error);

private string GenerateReport()
{
refum

"Raport analiz textrin" +
———————————————————— rin'rn” +
§"Caractere: {[blCharsValue. Text}rin" +
§"Cuvinte: {1bIWordsValue. Text} rn" +
§"Linii: {IblLinesValue. Text\rin" +
$"Propozitii: {IbISentencesValue. Text} rin" +
§"Lungime medie cuvant; {IblAvgWordLenValue. Text\rn" +

§"Cuvinte/propozitie (medie): {IblAvgWordsPerSentenceValue Text) rinirin" +

"Top cuvinte:\rin" +

string Join("\rin", IvTopWords.tems
Cast<ListViewltem>()
Select(i=>$"{i.Text}: {i.Subltems1].Text}"));

265

Figure 1 shows the interface created in
Visual Studio, containing 4 buttons, a window
where the text to be analyzed is entered, a
window where details about the analyzed text
will appear, and several labels with details
about the number of words, sentences,
characters, etc.

Figure 2 shows the result generated by the
application for the given text to be analyzed.
The application provides information
regarding: the number of characters in the
text, the number of words, the number of lines
(they must have the . sign at the end), the
average length of characters/word, the
average length of words / sentence.

Figure 3 shows how the application
provides us with a report that we can save in a
text file with all the related details (number of
words, number of lines, number of characters,
frequency of occurrence of certain words,
etc.).

Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

u File Edit View Git Project Build Debug Format Test Analyze Tools Extensions Window Help Search (Ctrl+Q)
‘0-0 - ey b Tenae < b 6+ |88 1]

alo-<-

g f?jﬂﬁu*

g‘ FormMain.Designer.cs FormMain.cs Program.cs FormMain.cs [Design] + X
g
9 Analizator de text \E’
&
7
o Analizeaza ‘ ‘ Curéata textul ‘ Tnearca fisier Salveaza rapurt‘
3
Statistici text
Caractere: 0
Cuvinte: 0
Linii: 0
0
Lungime medie cuvant: 0
Cuvinte/propozitie (medie): 0
Top cuvinte
Cuvant Numéar aparitii
]
Figure 1. Design form of the application
o) Fe Eot View G Poject Build DEOUD TES ANGNZE 00K EXIERSONS WIRIOW HEID | el 00O A | TextAnatyzer A® - o x
®- -=88 e E MG AL -) = i sn(A & o

Pracess | [15752) Textanalyzer.exe «] 5 Lifecyele Events + Tveact

£ W Textansiyzes -] % Tenansizerprogran - | s |+

e] A W
4 General Disgnastis session: 51 seconds
i For =L
T 306 nc usabie: ConRrols in s Qroup. Drag an e anto

0 410,308 11 1o e T00baX

nanespace TextAnalyzer oo
€
"

6 5. static class Prograa 4 process Memory MB) | ¥ @F
Analizaior de text - a X i T ©
Revista Analele Universithtil Constantin Srincust din e = =
Targi-2lu - 5eris Tnginerie prosvests 11dLs originele i i apont . | ,
ribuie 1n progresul cu domeniul 4€CPU (% of all processors)
1+ Se Incurajests. sbor erdlsciptinara Sttt 00 ™
" - fies ginele, — :
elaborate de sutori din tors 31 strainatate (din b ficd
Instiiuei wiversitare i e cercetare, precum 31 din G o . L.
industrie). Linii. 2 Foral0) Summary Events Memory Usage CPU Usage
Revists se sdresenza celor ce doresc sa se informeze in Propozitic 4 i Events.
privinta grobiescior Legate de diverse domenii sie
ingineriei, s eoriel si practicii, precus si 8 L L = Show Events 10 of 0}
preblenatiesl invacomantulit soperior al ingineriel R -
Astfel, a se adreseaza decpotriva cadrelor Lo * b s
iveristare, cercetatoril, Sttt e snspanon
sntreprenorilor, oficialilor guvernamentali etc. Top cuvinte U Usge
Cura [r—— o Recora cu e
P '
- s
“ :
oginee N
P N
e 2
e 2 .

I ' :
Figure 2. Results generated by the application after analyzing the given text

00 Fle Edit View Gt Poject Buld Debug Test Analze Tools FEdersions Window Help n (it P | Texthnayzer AR - o0 x
®- -E88| 7 - - Consinve - - | BB | B 5 W W O L SN B EE EH & s B
Process [1484 Textanaiyerese =] 77 Utecyce Events - Teac s Stackrame -B

FormMain 5 FormMaines < LRI | desgn] s
Search ool 5|~ resazer [P Tensnan 1 auee: arngs wersn) |4 g L L8 G 2
Py W ;

2

There are no usable conerols in this group. Drag an item ant] ing Sy i

s s Sevises et Sriversielel s Srers] 4 | [t | [t | [
this et 10 a0 it 10 the toolbax: Thrgu-lu - Seria Inginerie promsvesza studii originale

care contribuie la progresul cunoasterii in doser

using Systen.To

6 ingineriel. Se incurajeazs abordares interdiscipliners Stmtistic) text.
1 i publicares de lucrard stiintifice originale, T .
8 Snamespace Text| |elabarate de sutorl din tara <1 stralnatate (din
9 institutii universitare si de cercetare, precum =i din e =
| ndussrie. e 2
LI Pe— P - Y
+ [« Outop » Conermg225 v & ChminCorfeeng 5 5 | Lumgmemedeaning &8
Organizare = Folder nou) e e =
A e S— :
B acest PC Top cuvnte
dncin | RapontnsizsTest
& pesc Rage Covien [y ———— -
B s
ain s
. .
inginere .
= .
adeeseaa 2
ES o ale 2 -

Sabvare cu tiput: | Text fies ("4x1) <

A =] [

T o winicow [

266

Annals of the ,,Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025

4. CONCLUSIONS

The paper demonstrates that using C# and
WinForms, an efficient, easy-to-use, fast and
extensible text analysis tool can be developed.
The system represents a solid starting point
for advanced natural language processing
applications.

The application can be used in:

* academia

* writing and proofreading

* journalism

» training for advanced NLP analysis.

REFERENCES

[1]D. Jurafsky and J. H. Martin, Speech and
Language Processing, 3rd ed.
[Online]. Available:
https://web.stanford.edu/~jurafsky/slp3/

[2]C. D. Manning and H. Schiitze,
Foundations of Statistical — Natural
Language Processing. Cambridge, MA:
MIT Press, 1999.

[3]S. Bird, E. Klein, and E. Loper, Natural
Language Processing with Python.
O’Reilly Media, 2009.

[4]spaCy Documentation, “Industrial-Strength
Natural Language Processing in Python.”
[Online]. Available: https://spacy.io

[5]T. McEnery and A. Hardie, Corpus
Linguistics: Method, Theory and Practice.
Cambridge: Cambridge University Press,
2012.

[6]F. Sebastiani, ‘“Machine Learning in
Automated Text Categorization,” ACM
Computing Surveys, vol. 34, no. 1, pp. 1-
47,2002.

[7]Adrian Runceanu, Mihaela-Ana Runceanu,
“Challenges in teaching programming and
algorithms”, INTED2016 Proceedings,
10th International Technology, Education
and Development Conference Valencia,
Spain. 7-9 March, 2016, ISBN: 978-84-
608-5617-7 / ISSN: 2340-1079, Pages:
4120-4126 DOI:
10.21125/inted.2016.2003,
WOS:000402738404019

267

[8]Microsoft Docs, “C# Programming
Guide,” 2024. [Online]. Available:
https://learn.microsoft.com/dotnet/csharp/

[9]Microsoft Docs, “.NET Architecture,”
2024. [Online]. Available:
https://learn.microsoft.com/dotnet/standard
/

[10]B. Eckel, Thinking in C#, Prentice Hall,
2003.

[11]Microsoft Docs, “Windows Forms
Overview,” 2024. [Online]. Available:
https://learn.microsoft.com/dotnet/desktop/
winforms/

[12]Kolling, M., “Teaching introductory
programming: a new approach using BlueJ
and C#,” Journal of Computing Sciences in
Colleges, 2015.

[13]Adrian Runceanu, “The role of artificial
intelligence tools for teaching in technical
universities”, EDULEARN25 Proceedings,
pp. 6900-6905, ISBN: 978-84-09-74218-9,
ISSN: 2340-1117, doi:
10.21125/edulearn.2025.1690, Conference
name: 17th International Conference on
Education and New Learning
Technologies, 30 June-2 July, 2025,
Location: Palma, Spain

https://web.stanford.edu/~jurafsky/slp3/
https://spacy.io/
https://learn.microsoft.com/dotnet/desktop/winforms/
https://learn.microsoft.com/dotnet/desktop/winforms/

