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ABSTRACT: We introduce a generalization of structured manifolds as the most general Riemannian metric g
associated to an affinor (tensor field of (1, 1)-type) F and initiate a study of their semi-invariant submanifolds.
These submanifolds are generalizations of CR- submanifolds of almost complex geometry and semi-invariant
submanifolds of several interesting geometries (almost product, almost contact and others). We characterize the
integrability of both invariant and anti-invariant distribution.
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1. INTRODUCTION

The geometry of manifolds endowed with
geometrical structures has been intensively
studied and several important results have been
published, see Yano-Kon [14]. The more
important classes of such manifolds are formed
by almost complex, almost product, almost
contact, almost paracontact manifolds for
which the cited book offers a good
introduction. The geometry of submanifolds in
these manifolds is very rich and interesting, as
well, see for example the classical [7] or the
more recent survey [8]. CR-submanifolds
introduced by Bejancu in [2] (for almost
complex geometry) respectively [5] (for
almost contact geometry) had a great impact
on the developing of the theory of
submanifolds in these ambient manifolds; a
proof of this fact is given by the books [4] and
[13].

In the present paper we first introduce the
concept of (g, F, +1)-manifold which contains
as particular cases all the above types of
structures. Then we study semi-invariant sub-
manifolds of a (g, F, +1)-manifold, which are
extensions of CR-submanifolds to this general
class of manifolds. We find necessary and
sufficient conditions for the integrability of
both distributions on a semi-invariant
submanifold, see Theorems 3.1 and 3.3.
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2. METRIC GEOMETRY OF
AFFINORS AND SUBMANIFOLDS

Let M be an m —dimensional manifold for
which we denote by C*(M) the algebra of
smooth functions on M and by I'(TM) the
C” (M) —module of smooth sections of the
tangent bundle TM of M ; let X,Y, Z, ... denote
such vector fields. We use the same notation
I'(V) for any other vector bundle V over M.
Let also 7;'M be the C®(M) —module of
I'TM @ T*M) i.e. the real space of tensor
fields of (1,1) —type on M. Let consider a
fixed F € 7'M usually called affinor ([9]) or
vector 1 —form; the remarkable affinor of
every manifold is the Kronecker tensor field
I= ().

Let now g be a Riemannian metric on M.
Definition 2.1. M isa (g, F, +1) —manifold if:
gFX, Y)Y+ g(X,FY) =0. 4))
The geometry of the data (M, g, F, +1) is called
affinor-metric geometry. If in particular, F, is
nondegenerate at any point x € M then we say
that M is a nondegenerate
(g, F, +1) —manifold; otherwise, M is called
degenerate (g, F, +1) —manifold.

The relation (1) says that the g —adjoint of F
is F* = —F . In literature there is an abundance
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of examples of (g, F,+1) —manifolds. Some
of the main examples are presented here:
Examples 2.2.

1. An almost Hermitian manifold ([4])
(M,g,]) is a nondegenerate (g,F,+1) —
manifold.

2. An almost parahermitian manifold
(Itrp  (M,g,P) is a nondegenerate
(g, F,+1) —manifold.

3. An almost contact metric manifold
(4D M, g,¢,&,n)1s a (g, F,+1) —manifold,
as ¢(&) = 0, M is degenerate.

4. An almost paracontact manifold ([12])
M,g,¢,¢,mn)isa(g, F,+1) —manifold. As in
the previous example we have ¢(¢) = 0 and
therefore M is degenerate.

5. The general case of a nondegenerate
(g,F,+1) —manifold is called structured
manifold in [11].

Recall that a real 2m —dimensional manifold
M is called an almost symplectic manifold if it
is endowed with a nondegenerate 2 —form

Q €A*’(M). We derive the following
characterization:
Proposition 2.3 Let M be a

(g, F,+1) —manifold. Then M is
nondegenerate if and only if () defined by:

QX Y) = gFX,Y) 2)

is an almost symplectic structure. In this case
m is even.

Proof. Q is  skew-symmetric. A
straightforward computation yields that Q is
nondegenerate if and only if M is a
nondegenerate (g, F, +1) —manifold. [ ]

Example 2.4. For Example 1.2.1 () is exactly
the fundamental or Kéhler 2 —form and then
inspired by this fact we introduce:

Definition 2.5. For a nondegenerate
(g,F,+1) —manifold Q is call the
fundamental 2 —form.

In the last part of this section let us recall
briefly the geometry of Riemannian
submanifolds. Consider an n —dimensional
submanifold N of M. Then the main objects
induced by the Levi-Civita connection ¥V of
(M, g) on N are involved in the well known
Gauss-Weingarten equations:
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VY = VyY + h(X,Y),VyV = —A, X + VgV,
3)

for any X,Y € I'(TN) and V € I'(T*N). Here
V is the Levi-Civita connection on N , h is the
second fundamental form of N, A, is the
Weingarten operator with respect to the normal
section V and V* is the normal connection in
the normal bundle TN of N. Let us point out
that h and Ay are related by:
g(h(X,Y),V) = g(AvX,Y). “)
If h vanishes identically on N then N is called
totally geodesic.

3. SUBMANIFOLDS IN AFFINOR-
METRIC GEOMETRY

Next, we consider a submanifold N of a
(g, F,+1) —manifold M. Then g induces a
Riemannian metric on N which we denote by
the same symbol g. Then, following the
definition given by Bejancu [2] for CR-
submanifolds we introduce a special class of
submanifolds of M as follows:

Definition 3.1. N is a semi-invariant
submanifold of M if there exists a distribution
D on N satisfying the conditions:

(1) D is F —invariant:
F(D,) cD,,¥VxE€N. 3
(i1) The  complementary  orthogonal

distribution DY to D in TN is F —anti-
invariant, that is:

F(D) cTEN,Vx € N. (6)

(iii) F2(D1) is a distribution on N .

Some particular classes of semi-invariant
submanifolds are defined as follows. Let p and
q be the ranks of the distributions D and D+
respectively. If ¢ = 0, thatis D' = {0}, we say
that N is an F —invariant submanifold of M. If
p = 0, that is D = {0}, we call N an F —anti-
invariant submanifold of M.
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If pgq # 0 then N is called a proper semi-
invariant submanifold. Now, we denote by D
the complementary orthogonal vector bundle
to F(D'Y) in T*N.If D = {0} then we say that
N is anormal F —semi-invariant submanifold.
Thus, N is an F —invariant, respectively
F —anti-invariant, if and only if:

F(TN) Cc TN (resp. F(TN) c TN). )

N is normal F —semi-invariant if and only if:

F(DY) =T*N. 8
Examples 3.2.

1) For Example 2.2.1 we obtain the classical
concept of CR —submanifold of Bejancu [4];
the condition iii) is satisfied from J? = —1I.

2) For Example 2.2.2 we obtain the notion of
semi-invariant submanifold; for the almost
parahermitian case see [ 1] while for the second
case see [3]. The condition iii) is satisfied again
from P2 = —I.

3) For Example 2.2.3 we obtain the notion of
semi-submanifold [4] with & € T+ N . This last
condition implies TN C kernand since
®lkern 1s an almost complex structure we get
ii).

4) For Example 2.2.4 we obtain the concept of
semi-submanifold from [10] with & € TLN.
Again this condition means TN c ker n and
since ¢ |ger 4 1s an almost product structure we
have iii).

5) The condition (ii1) does not appears in [11].

Returning to the Definition 3.1 we deduce that
the tangent bundle TN and the normal bundle
TLN of a semi-invariant submanifold N have
the orthogonal decompositions:

TN=D @ DY, TN =FD) ®D. 9)
Then we denote by P and Q the projection

morphisms of TN on D and D+ respectively
and obtain for X = PX + QX € I'(TN ):

FX = X + wX (10)
where we put:
o=F P, w=F ~ Q. (11)
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Thus ¢ is a tensor field of (1,1) —type on N
while w is a F (D+) —valued vector 1 —form
on N . Thus we derive:

Proposition 3.3. Let N be a semi-invariant
submanifold of a (g,F,+1) —manifold M.
Then:

(iv) N is a (g, ¢, +1) —manifold.

(v) F2(D4) is a vector subbundle of D*.

(vi) The vector bundle D is F —invariant i.e.
for all x € N we have: F(Dx) c Dx.

Proof. (iv) By definition, g is a Riemannian
metric on N and ¢ is a tensor field of (1, 1)-
type on N; we need only to show (5). By using
(1) for F we obtain for X,Y € I'(TN):

g(eX,Y) = g(FPX,Y) = g(FPX,PY)
= —g(PX,FPY) =

(v) Take X €I'(D) and Y € I'(D1) in (5):
g(X,F?Y) = —g(FX,FY) = Osince FX €
r(D) and FY € I'(TtN). Hence F?(D') is
orthogonal to D and by condition (iii) we
deduce that F2(D%1) is a vector subbundle of
D+.

(vi) Take X €'(TN),Y €eI'(DY) and V €
I'(D). Then we obtain:

gFV,X)=—g(V,FX) = —g(V,pX + wX)
=0
and:

g(FV,FY) = —g(V,F?Y ) =0

since X € I'(D),wX € I'(FD') and F?Y €
r(p4). Thus FD is orthogonal to TN @ FD*,
that is FD is a vector subbundle of D. This
completes the proof of the proposition. ]
In the non-degenerated case we have equalities
for the above inclusions:

Corollary 3.4. Let N be a semi-invariant
submanifold of a nondegenerate
(g, F,+1) —manifold M . Then:

1) the above distributions satisty:

F (D) =D, F}(D*) =D*, F(D)=D. (12)

2) D* and F (D1) are Lagrangian distribution
on (TM, Q). In particular if N is a normal semi-
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invariant submanifold then T*N is a
Lagrangian submanifold in (TM, ).

Proof. We need to prove only 2).

2.1) Let X,Y €er(Dt'); then Q(X,Y) =
g(FX,Y) = 0 since FX € I'(T*N) while Y €
I'(TN).

2.2) Let X,Y € I'(F (D1)); then Q(X,Y) =
g(FX,Y) =0 since FX € I'(TN) while Y €
r'(TLN). ]

4. INTEGRABILITY OF
DISTRIBUTIONS ON A SEMI-
INVARIANT SUBMANIFOLD

Let N be a semi-invariant submanifold of a
(g,F,+1) —manifold M. Then we recall that
the Nijenhuis tensor field of F is defined as
follows ([4]):

Np(X,Y) = [FX,FY] + F2[X,Y] —
F[FX,Y] - F[X,FY], (13)
for any X,Y € I'(TM). In a similar way, the
Nijenhuis tensor field of ¢ on N is given by:

N(p(X' Y) = [QOX, goY] + (pZ[X' Y] -
pleX, Y] — @[X, Y], (14)

for any X,Y € I'(TN). We recall that a tensor
field of (1,1) —type defines an integrable
structure on a manifold if and only if its
Nijenhuis tensor field vanishes identically on
the manifold. Now we obtain necessary and
sufficient conditions for the integrability of D
and Din terms of Nijenhuis tensor fields of F
and ¢@.

Theorem 4.1. Let N be a semi-invariant
submanifold of a (g,F,+1) —manifold M.
Then the following assertions are equivalent:
1) D is an integrable distribution.

2) The Nijenhuis tensor field of ¢ satifies:

Q ° N,=0, VX,Y €I'(D). (15)
3) The Nijenhuis tensor fields of F and ¢
satisfy the equality: Np = N, on D.

Proof. Firstly, we note that D is integrable if
and only if:

Q([X,Y]) =0, VX,Y € I'(D). (16)
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Since the last three terms in the right side of
(14) lie in I'(D) we deduce that:

Q ° No(X,Y)=Q([FX,FY]),VX,Y €
r(D). a7
As M is nondegenerate we deduce that ¢ is an
automorphism on I'(D). Thus the equivalence
of 1) and 2) follows directly. Next, we obtain
forany X,Y € I'(D):

Np(X,Y) =N,(X,Y) + Fo([X,Y ]) —
w([@X,Y]) — w([X, @Y D. (18)
If D is integrable then the last three terms of
(18) vanishes and this yields 3). Conversely,
suppose that Ny = N, on D; then:
Fo([X,Y]) = w([eX, Y]+ [X, @Y]). (19)
Obviously the right-hand-side of the previous
equation is in I'(F (D)) c I'(T?°tN). On the
other hand, the left-hand-side is in I'(F2D+) c
I'(TN); we conclude that both sides in (19)
must vanish.

Finally, from: F2?Q([X,Y])=0 and F?
automorphism of I'(TM ) we deduce 1). m

Remark 4.2. For Example 1.2.1 the
equivalence of 1) and 2) is exactly the
Theorem 2.2. of [4] while the equivalence of
1) and 3) is the Theorem 2.1. of [4].

Now, we consider X,Y € I'(D1). Then taking
into account that X = @Y = 0 we get:
N,(X,Y) = F?P[X,Y] (20)
and this enables us to state the following:
Theorem 4.3. Let N be a semi-invariant
submanifold of a nondegenerate
(g, F,+1) —manifold. Then D+ is integrable if
and only if the Nijenhuis tensor field of ¢
vanishes identically on D+,

Remark 4.4. For Example 1.2.1 the above
result is the Theorem 2.3. of [4].

5. CONCLUSION

We can connect our study with the almost
symplectic geometry and this fact opens some
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possible further applications in physical
sciences having as an example the relationship
between CR-structures and Relativity pointed
out in the last Chapter of [4].

Also the second part of the above Corollary
3.4. is extremely important since it relates the
geometry of semi-invariant submanifolds with
the almost symplectic geometry, a topic very
studied from the point of view of applications
in Analytical Mechanics.
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