

SEMI-INVARIANT SUBMANIFOLDS IN METRIC GEOMETRY OF AFFINORS

Lecturer PhD NOVAC-CLAUDIU CHIRIAC, „Constantin Brâncuși” University of Târgu Jiu, ROMÂNIA

ABSTRACT: We introduce a generalization of structured manifolds as the most general Riemannian metric g associated to an affinor (tensor field of $(1, 1)$ -type) F and initiate a study of their semi-invariant submanifolds. These submanifolds are generalizations of CR- submanifolds of almost complex geometry and semi-invariant submanifolds of several interesting geometries (almost product, almost contact and others). We characterize the integrability of both invariant and anti-invariant distribution.

KEY WORDS: Riemannian geometry; CR-submanifolds, semi-invariant submanifold;

1. INTRODUCTION

The geometry of manifolds endowed with geometrical structures has been intensively studied and several important results have been published, see Yano-Kon [14]. The more important classes of such manifolds are formed by almost complex, almost product, almost contact, almost paracontact manifolds for which the cited book offers a good introduction. The geometry of submanifolds in these manifolds is very rich and interesting, as well, see for example the classical [7] or the more recent survey [8]. CR-submanifolds introduced by Bejancu in [2] (for almost complex geometry) respectively [5] (for almost contact geometry) had a great impact on the developing of the theory of submanifolds in these ambient manifolds; a proof of this fact is given by the books [4] and [13].

In the present paper we first introduce the concept of $(g, F, +1)$ -manifold which contains as particular cases all the above types of structures. Then we study semi-invariant submanifolds of a $(g, F, +1)$ -manifold, which are extensions of CR-submanifolds to this general class of manifolds. We find necessary and sufficient conditions for the integrability of both distributions on a semi-invariant submanifold, see Theorems 3.1 and 3.3.

2. METRIC GEOMETRY OF AFFINORS AND SUBMANIFOLDS

Let M be an m -dimensional manifold for which we denote by $C^\infty(M)$ the algebra of smooth functions on M and by $\Gamma(TM)$ the $C^\infty(M)$ -module of smooth sections of the tangent bundle TM of M ; let X, Y, Z, \dots denote such vector fields. We use the same notation $\Gamma(V)$ for any other vector bundle V over M . Let also $\mathcal{T}_1^1 M$ be the $C^\infty(M)$ -module of $\Gamma(TM \otimes T^*M)$ i.e. the real space of tensor fields of $(1, 1)$ -type on M . Let consider a fixed $F \in \mathcal{T}_1^1 M$ usually called affinor ([9]) or vector 1-form; the remarkable affinor of every manifold is the Kronecker tensor field $I = (\delta_j^i)$.

Let now g be a Riemannian metric on M .

Definition 2.1. M is a $(g, F, +1)$ -manifold if:

$$g(FX, Y) + g(X, FY) = 0. \quad (1)$$

The geometry of the data $(M, g, F, +1)$ is called *affinor-metric geometry*. If in particular, F_x is nondegenerate at any point $x \in M$ then we say that M is a *nondegenerate* $(g, F, +1)$ -manifold; otherwise, M is called *degenerate* $(g, F, +1)$ -manifold.

The relation (1) says that the g -adjoint of F is $F^* = -F$. In literature there is an abundance

of examples of $(g, F, +1)$ –manifolds. Some of the main examples are presented here:

Examples 2.2.

1. An *almost Hermitian manifold* ([4]) (M, g, J) is a nondegenerate $(g, F, +1)$ –manifold.
2. An *almost parahermitian manifold* ([1]) (M, g, P) is a nondegenerate $(g, F, +1)$ –manifold.
3. An *almost contact metric manifold* ([4]) (M, g, ϕ, ξ, η) is a $(g, F, +1)$ –manifold; as $\phi(\xi) = 0$, M is degenerate.
4. An *almost paracontact manifold* ([12]) (M, g, ϕ, ξ, η) is a $(g, F, +1)$ –manifold. As in the previous example we have $\phi(\xi) = 0$ and therefore M is degenerate.
5. The general case of a nondegenerate $(g, F, +1)$ –manifold is called *structured manifold* in [11].

Recall that a real $2m$ –dimensional manifold M is called an *almost symplectic manifold* if it is endowed with a nondegenerate 2 –form $\Omega \in \Lambda^2(M)$. We derive the following characterization:

Proposition 2.3 Let M be a $(g, F, +1)$ –manifold. Then M is nondegenerate if and only if Ω defined by:

$$\Omega(X, Y) = g(FX, Y) \quad (2)$$

is an almost symplectic structure. In this case m is even.

Proof. Ω is skew-symmetric. A straightforward computation yields that Ω is nondegenerate if and only if M is a nondegenerate $(g, F, +1)$ –manifold. ■

Example 2.4. For Example 1.2.1 Ω is exactly the *fundamental* or Kähler 2 –form and then inspired by this fact we introduce:

Definition 2.5. For a nondegenerate $(g, F, +1)$ –manifold Ω is call *the fundamental 2 –form*.

In the last part of this section let us recall briefly the geometry of Riemannian submanifolds. Consider an n –dimensional submanifold N of M . Then the main objects induced by the Levi-Civita connection $\tilde{\nabla}$ of (M, g) on N are involved in the well known Gauss-Weingarten equations:

$$\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y), \tilde{\nabla}_X V = -A_V X + \nabla_X^\perp V, \quad (3)$$

for any $X, Y \in \Gamma(TN)$ and $V \in \Gamma(T^\perp N)$. Here ∇ is the Levi-Civita connection on N , h is the second fundamental form of N , A_V is the Weingarten operator with respect to the normal section V and ∇^\perp is the normal connection in the normal bundle $T^\perp N$ of N . Let us point out that h and A_V are related by:

$$g(h(X, Y), V) = g(A_V X, Y). \quad (4)$$

If h vanishes identically on N then N is called *totally geodesic*.

3. SUBMANIFOLDS IN AFFINOR-METRIC GEOMETRY

Next, we consider a submanifold N of a $(g, F, +1)$ –manifold M . Then g induces a Riemannian metric on N which we denote by the same symbol g . Then, following the definition given by Bejancu [2] for CR-submanifolds we introduce a special class of submanifolds of M as follows:

Definition 3.1. N is a *semi-invariant submanifold* of M if there exists a distribution D on N satisfying the conditions:

(i) D is F –invariant:

$$F(D_x) \subset D_x, \forall x \in N. \quad (5)$$

(ii) The complementary orthogonal distribution D^\perp to D in TN is F –anti-invariant, that is:

$$F(D_x^\perp) \subset T_x^\perp N, \forall x \in N. \quad (6)$$

(iii) $F^2(D^\perp)$ is a distribution on N .

Some particular classes of semi-invariant submanifolds are defined as follows. Let p and q be the ranks of the distributions D and D^\perp respectively. If $q = 0$, that is $D^\perp = \{0\}$, we say that N is an F –*invariant submanifold* of M . If $p = 0$, that is $D = \{0\}$, we call N an F –*anti-invariant submanifold* of M .

If $pq \neq 0$ then N is called a *proper* semi-invariant submanifold. Now, we denote by \tilde{D} the complementary orthogonal vector bundle to $F(D^\perp)$ in $T^\perp N$. If $\tilde{D} = \{0\}$ then we say that N is a *normal* F –semi-invariant submanifold. Thus, N is an F –invariant, respectively F –anti-invariant, if and only if:

$$F(TN) \subset TN \text{ (resp. } F(TN) \subset T^\perp N\text{).} \quad (7)$$

N is normal F –semi-invariant if and only if:

$$F(D^\perp) = T^\perp N. \quad (8)$$

Examples 3.2.

- 1) For Example 2.2.1 we obtain the classical concept of *CR* –submanifold of Bejancu [4]; the condition iii) is satisfied from $J^2 = -I$.
- 2) For Example 2.2.2 we obtain the notion of semi-invariant submanifold; for the almost parahermitian case see [1] while for the second case see [3]. The condition iii) is satisfied again from $P^2 = -I$.
- 3) For Example 2.2.3 we obtain the notion of semi-submanifold [4] with $\xi \in T^\perp N$. This last condition implies $TN \subset \ker \eta$ and since $\phi|_{\ker \eta}$ is an almost complex structure we get iii).
- 4) For Example 2.2.4 we obtain the concept of semi-submanifold from [10] with $\xi \in T^\perp N$. Again this condition means $TN \subset \ker \eta$ and since $\phi|_{\ker \eta}$ is an almost product structure we have iii).
- 5) The condition (iii) does not appears in [11].

Returning to the Definition 3.1 we deduce that the tangent bundle TN and the normal bundle $T^\perp N$ of a semi-invariant submanifold N have the orthogonal decompositions:

$$TN = D \oplus D^\perp, T^\perp N = F(D^\perp) \oplus \tilde{D}. \quad (9)$$

Then we denote by P and Q the projection morphisms of TN on D and D^\perp respectively and obtain for $X = PX + QX \in \Gamma(TN)$:

$$FX = \varphi X + \omega X \quad (10)$$

where we put:

$$\varphi = F \circ P, \omega = F \circ Q. \quad (11)$$

Thus φ is a tensor field of $(1, 1)$ –type on N while ω is a $F(D^\perp)$ –valued vector 1 –form on N . Thus we derive:

Proposition 3.3. Let N be a semi-invariant submanifold of a $(g, F, +1)$ –manifold M . Then:

(iv) N is a $(g, \varphi, +1)$ –manifold.

(v) $F^2(D^\perp)$ is a vector subbundle of D^\perp .

(vi) The vector bundle \tilde{D} is F –invariant i.e. for all $x \in N$ we have: $F(\tilde{D}x) \subset \tilde{D}x$.

Proof. (iv) By definition, g is a Riemannian metric on N and φ is a tensor field of $(1, 1)$ –type on N ; we need only to show (5). By using (1) for F we obtain for $X, Y \in \Gamma(TN)$:

$$\begin{aligned} g(\varphi X, Y) &= g(FPX, Y) = g(FPX, PY) \\ &= -g(PX, FPY) = \\ &= -g(X, FPY) = -g(X, \varphi Y). \end{aligned}$$

(v) Take $X \in \Gamma(D)$ and $Y \in \Gamma(D^\perp)$ in (5): $g(X, F^2Y) = -g(FX, FY) = 0$ since $FX \in \Gamma(D)$ and $FY \in \Gamma(T^\perp N)$. Hence $F^2(D^\perp)$ is orthogonal to D and by condition (iii) we deduce that $F^2(D^\perp)$ is a vector subbundle of D^\perp .

(vi) Take $X \in \Gamma(TN), Y \in \Gamma(D^\perp)$ and $V \in \Gamma(\tilde{D})$. Then we obtain:

$$g(FV, X) = -g(V, FX) = -g(V, \varphi X + \omega X) = 0$$

and:

$$g(FV, FY) = -g(V, F^2Y) = 0$$

since $\varphi X \in \Gamma(D), \omega X \in \Gamma(FD^\perp)$ and $F^2Y \in \Gamma(D^\perp)$. Thus $F\tilde{D}$ is orthogonal to $TN \oplus FD^\perp$, that is $F\tilde{D}$ is a vector subbundle of \tilde{D} . This completes the proof of the proposition. ■

In the non-degenerated case we have equalities for the above inclusions:

Corollary 3.4. Let N be a semi-invariant submanifold of a nondegenerate $(g, F, +1)$ –manifold M . Then:

1) the above distributions satisfy:

$$F(D) = D, F^2(D^\perp) = D^\perp, F(\tilde{D}) = \tilde{D}. \quad (12)$$

2) D^\perp and $F(D^\perp)$ are Lagrangian distribution on (TM, Ω) . In particular if N is a normal semi-

invariant submanifold then $T^\perp N$ is a Lagrangian submanifold in (TM, Ω) .

Proof. We need to prove only 2).

2.1) Let $X, Y \in \Gamma(D^\perp)$; then $\Omega(X, Y) = g(FX, Y) = 0$ since $FX \in \Gamma(T^\perp N)$ while $Y \in \Gamma(TN)$.

2.2) Let $X, Y \in \Gamma(F(D^\perp))$; then $\Omega(X, Y) = g(FX, Y) = 0$ since $FX \in \Gamma(TN)$ while $Y \in \Gamma(T^\perp N)$. ■

4. INTEGRABILITY OF DISTRIBUTIONS ON A SEMI-INVARIANT SUBMANIFOLD

Let N be a semi-invariant submanifold of a $(g, F, +1)$ –manifold M . Then we recall that the Nijenhuis tensor field of F is defined as follows ([4]):

$$N_F(X, Y) = [FX, FY] + F^2[X, Y] - F[FX, Y] - F[X, FY], \quad (13)$$

for any $X, Y \in \Gamma(TM)$. In a similar way, the Nijenhuis tensor field of φ on N is given by:

$$N_\varphi(X, Y) = [\varphi X, \varphi Y] + \varphi^2[X, Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y], \quad (14)$$

for any $X, Y \in \Gamma(TN)$. We recall that a tensor field of $(1, 1)$ –type defines an integrable structure on a manifold if and only if its Nijenhuis tensor field vanishes identically on the manifold. Now we obtain necessary and sufficient conditions for the integrability of D and D^\perp in terms of Nijenhuis tensor fields of F and φ .

Theorem 4.1. Let N be a semi-invariant submanifold of a $(g, F, +1)$ –manifold M . Then the following assertions are equivalent:

- 1) D is an integrable distribution.
- 2) The Nijenhuis tensor field of φ satisfies:

$$Q \circ N_\varphi = 0, \forall X, Y \in \Gamma(D). \quad (15)$$

- 3) The Nijenhuis tensor fields of F and φ satisfy the equality: $N_F = N_\varphi$ on D .

Proof. Firstly, we note that D is integrable if and only if:

$$Q([X, Y]) = 0, \forall X, Y \in \Gamma(D). \quad (16)$$

Since the last three terms in the right side of (14) lie in $\Gamma(D)$ we deduce that:

$$Q \circ N_\varphi(X, Y) = Q([FX, FY]), \forall X, Y \in \Gamma(D). \quad (17)$$

As M is nondegenerate we deduce that φ is an automorphism on $\Gamma(D)$. Thus the equivalence of 1) and 2) follows directly. Next, we obtain for any $X, Y \in \Gamma(D)$:

$$N_F(X, Y) = N_\varphi(X, Y) + F\omega([X, Y]) - \omega([\varphi X, Y]) - \omega([X, \varphi Y]). \quad (18)$$

If D is integrable then the last three terms of (18) vanishes and this yields 3). Conversely, suppose that $N_F = N_\varphi$ on D ; then:

$$F\omega([X, Y]) = \omega([\varphi X, Y] + [X, \varphi Y]). \quad (19)$$

Obviously the right-hand-side of the previous equation is in $\Gamma(F(D^\perp)) \subset \Gamma(T^{bot}N)$. On the other hand, the left-hand-side is in $\Gamma(F^2 D^\perp) \subset \Gamma(TN)$; we conclude that both sides in (19) must vanish.

Finally, from: $F^2 Q([X, Y]) = 0$ and F^2 automorphism of $\Gamma(TM)$ we deduce 1). ■

Remark 4.2. For Example 1.2.1 the equivalence of 1) and 2) is exactly the Theorem 2.2. of [4] while the equivalence of 1) and 3) is the Theorem 2.1. of [4].

Now, we consider $X, Y \in \Gamma(D^\perp)$. Then taking into account that $\varphi X = \varphi Y = 0$ we get:

$$N_\varphi(X, Y) = F^2 P[X, Y] \quad (20)$$

and this enables us to state the following:

Theorem 4.3. Let N be a semi-invariant submanifold of a nondegenerate $(g, F, +1)$ –manifold. Then D^\perp is integrable if and only if the Nijenhuis tensor field of φ vanishes identically on D^\perp .

Remark 4.4. For Example 1.2.1 the above result is the Theorem 2.3. of [4].

5. CONCLUSION

We can connect our study with the almost symplectic geometry and this fact opens some

possible further applications in physical sciences having as an example the relationship between CR-structures and Relativity pointed out in the last Chapter of [4].

Also the second part of the above Corollary 3.4. is extremely important since it relates the geometry of semi-invariant submanifolds with the almost symplectic geometry, a topic very studied from the point of view of applications in Analytical Mechanics.

REFERENCES

- [1] Bejan, C. L., CR-Submanifolds of hyperbolic almost Hermitian manifolds, *Demonstratio Mathematica*, 23(1990), 335-343.
- [2] Bejancu, A., CR-Submanifolds of a Kaehler manifold I, *Proc. Amer. Math. Soc.*, 69(1978), 134-142.
- [3] Bejancu, A., Semi-invariant submanifolds of locally product Riemannian manifolds, *An. Univ. Timișoara Ser. Știint. Mat.*, 22(1984), no. 1-2, 3-11.
- [4] Bejancu, A., Geometry of CR-Submanifolds, D. Reidel Publish. Comp., Dordrecht, 1986.
- [5] Bejancu, A. and Papaghiuc, N., Semi-invariant submanifolds of a Sasakian manifold, An. St. Univ. "Al. I. Cuza" Iași, 27(1981), 163-170.
- [6] Blair, D.E. and Chen, B.Y., On CR-submanifolds of Hermitian manifolds, *Israel J. Math.*, 34(1979), 353-363.
- [7] Chen, B.Y., Geometry of Submanifolds and Its Applications, Science Univ. Tokyo, 1981.
- [8] Chen, B.Y., Riemannian submanifolds. *Handbook of differential geometry*, Vol. I, 187-418, North-Holland, Amsterdam, 2000.
- [9] Doupopec, M. and Kolàr, I., Natural affinors on time-dependent Weil bundles, *Arch. Math. (Brno)*, 27B (1991), 205-209.
- [10] Ianuș, S. and Mihai, I., Semi-invariant submanifolds of an almost paracontact manifolds, *Tensor*, 39(1982), 195-200.
- [11] Ornea, L., CR-submanifolds. A class of examples, *Rev. Roumaine Math. Pures Appl.*, 51(2006), no. 1, 77-85.
- [12] Sato, I., On a structure similar to the almost contact structure, *Tensor*, 30(1976), 219-224.
- [13] Yano, K. and Kon, M., CR-Submanifolds of Kaehlerian and Sasakian Manifolds, Birkhäuser, Boston, 1983.
- [14] Yano, K. and Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984.