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ABSTRACT:  We introduce a generalization of structured manifolds as the most general Riemannian metric g 

associated to an affinor (tensor field of (1, 1)-type) F and initiate a study of their semi-invariant submanifolds. 

These submanifolds are generalizations of CR- submanifolds of almost complex geometry and semi-invariant 

submanifolds of several interesting geometries (almost product, almost contact and others). We characterize the 

integrability of both invariant and anti-invariant distribution. 
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1. INTRODUCTION 
 

The geometry of manifolds endowed with 

geometrical structures has been intensively 

studied and several important results have been 

published, see Yano-Kon [14]. The more 

important classes of such manifolds are formed 

by almost complex, almost product, almost 

contact, almost paracontact manifolds for 

which the cited book offers a good 

introduction. The geometry of submanifolds in 

these manifolds is very rich and interesting, as 

well, see for example the classical [7] or the 

more recent survey [8]. CR-submanifolds 

introduced by Bejancu in [2] (for almost 

complex geometry) respectively [5] (for 

almost contact geometry) had a great impact 

on the developing of the theory of 

submanifolds in these ambient manifolds; a 

proof of this fact is given by the books [4] and 

[13]. 

In the present paper we first introduce the 

concept of (𝑔, 𝐹, +1)-manifold which contains 

as particular cases all the above types of 

structures. Then we study semi-invariant sub- 

manifolds of a (𝑔, 𝐹, +1)-manifold, which are 

extensions of CR-submanifolds to this general 

class of manifolds. We find necessary and 

sufficient conditions for the integrability of 

both distributions on a semi-invariant 

submanifold, see Theorems 3.1 and 3.3.  

 

2. METRIC GEOMETRY OF 

AFFINORS AND SUBMANIFOLDS 

 

Let 𝑀 be an 𝑚 −dimensional manifold for 

which we denote by 𝐶∞(𝑀) the algebra of 

smooth functions on 𝑀 and by 𝛤(𝑇𝑀) the 

𝐶∞(𝑀) −module of smooth sections of the 

tangent bundle 𝑇𝑀 of 𝑀 ; let 𝑋, 𝑌, 𝑍, . .. denote 

such vector fields. We use the same notation 

𝛤(𝑉) for any other vector bundle 𝑉 over 𝑀. 

Let also 𝒯1
1𝑀 be the 𝐶∞(𝑀) −module of 

𝛤(𝑇𝑀 ⊗ 𝑇∗𝑀 ) i.e. the real space of tensor 

fields of (1, 1) −type on 𝑀. Let consider a 

fixed 𝐹 ∈ 𝒯1
1𝑀 usually called affinor ([9]) or 

vector 1 −form; the remarkable affinor of 

every manifold is the Kronecker tensor field 

𝐼 = (𝛿𝑗
𝑖). 

Let now 𝑔 be a Riemannian metric on 𝑀. 

Definition 2.1. 𝑀 is a (𝑔, 𝐹, +1) −manifold if: 

 

𝑔(𝐹𝑋, 𝑌 ) + 𝑔(𝑋, 𝐹𝑌) = 0.           (1) 

 

The geometry of the data (M, g, F, +1) is called 

affinor-metric geometry. If in particular, 𝐹𝑥 is 

nondegenerate at any point 𝑥 ∈ 𝑀 then we say 

that 𝑀 is a nondegenerate 

(𝑔, 𝐹, +1) −manifold; otherwise, 𝑀 is called 

degenerate (𝑔, 𝐹, +1) −manifold. 

The relation (1) says that the 𝑔 −adjoint of 𝐹 

is 𝐹∗ = −𝐹 . In literature there is an abundance 
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of examples of (𝑔, 𝐹, +1) −manifolds. Some 

of the main examples are presented here: 

Examples 2.2. 

1. An almost Hermitian manifold ([4]) 

(𝑀, 𝑔, 𝐽) is a nondegenerate (𝑔, 𝐹, +1) − 

manifold.  

2. An almost parahermitian manifold 

([1]) (𝑀, 𝑔, 𝑃 ) is a nondegenerate 

(𝑔, 𝐹, +1) −manifold.  

3. An almost contact metric manifold 

([4]) (𝑀, 𝑔, 𝜙, 𝜉, 𝜂) is a (𝑔, 𝐹, +1) −manifold; 

as ϕ(ξ) = 0, M is degenerate. 

4. An almost paracontact manifold ([12]) 

(𝑀, 𝑔, 𝜙, 𝜉, 𝜂) is a (𝑔, 𝐹, +1) −manifold. As in 

the previous example we have 𝜙(𝜉) = 0 and 

therefore 𝑀 is degenerate. 

5. The general case of a nondegenerate 

(𝑔, 𝐹, +1) −manifold is called structured 

manifold in [11]. 

Recall that a real 2𝑚 −dimensional manifold 

𝑀 is called an almost symplectic manifold if it 

is endowed with a nondegenerate 2 −form 

Ω ∈ 𝛬2(𝑀 ). We derive the following 

characterization: 

Proposition 2.3 Let 𝑀 be a 

(𝑔, 𝐹, +1) −manifold. Then 𝑀 is 

nondegenerate if and only if Ω defined by: 

 

Ω(𝑋, 𝑌 )  =  𝑔(𝐹𝑋, 𝑌 )           (2) 

 

is an almost symplectic structure. In this case 

𝑚 is even. 

Proof. Ω is skew-symmetric. A 

straightforward computation yields that Ω is 

nondegenerate if and only if 𝑀 is a 

nondegenerate (𝑔, 𝐹, +1) −manifold.           ∎   

 

Example 2.4. For Example 1.2.1 Ω is exactly 

the fundamental or Kähler 2 −form and then 

inspired by this fact we introduce: 

Definition 2.5. For a nondegenerate 

(𝑔, 𝐹, +1) −manifold Ω is call the 

fundamental 2 −form. 

 

In the last part of this section let us recall 

briefly the geometry of Riemannian 

submanifolds. Consider an 𝑛 −dimensional 

submanifold 𝑁 of 𝑀. Then the main objects 

induced by the Levi-Civita connection 𝛻̃ of 

(𝑀, 𝑔) on 𝑁 are involved in the well known 

Gauss-Weingarten equations: 

 

𝛻̃𝑋𝑌 = 𝛻𝑋𝑌 + ℎ(𝑋, 𝑌), 𝛻̃𝑋𝑉 = −𝐴𝑉𝑋 + 𝛻𝑋
⊥𝑉,

              (3) 

 

for any 𝑋, 𝑌 ∈ 𝛤(𝑇𝑁) and 𝑉 ∈ 𝛤(𝑇⊥𝑁). Here 

𝛻 is the Levi-Civita connection on 𝑁 , ℎ is the 

second fundamental form of  𝑁, 𝐴𝑉 is the 

Weingarten operator with respect to the normal 

section 𝑉 and 𝛻⊥ is the normal connection in 

the normal bundle 𝑇⊥𝑁 of 𝑁. Let us point out 

that ℎ and 𝐴𝑉 are related by: 

 

𝑔(ℎ(𝑋, 𝑌), 𝑉) = 𝑔(𝐴𝑉𝑋, 𝑌).                      (4) 

 
If ℎ vanishes identically on 𝑁 then 𝑁 is called 

totally geodesic. 

 

3. SUBMANIFOLDS IN AFFINOR-

METRIC GEOMETRY 
 

Next, we consider a submanifold 𝑁 of a 

(𝑔, 𝐹, +1) −manifold 𝑀. Then 𝑔 induces a 

Riemannian metric on 𝑁 which we denote by 

the same symbol 𝑔. Then, following the 

definition given by Bejancu [2] for CR-

submanifolds we introduce a special class of 

submanifolds of 𝑀 as follows: 

Definition 3.1. 𝑁 is a semi-invariant 

submanifold of 𝑀 if there exists a distribution 

𝐷 on 𝑁 satisfying the conditions: 

(i) 𝐷 is 𝐹 −invariant: 

 

𝐹(𝐷𝑥) ⊂ 𝐷𝑥 , ∀ 𝑥 ∈ 𝑁.           (5) 

 

(ii) The complementary orthogonal 

distribution 𝐷⊥ to 𝐷 in 𝑇𝑁 is 𝐹 −anti-

invariant, that is: 

 

𝐹(𝐷𝑥
⊥)  ⊂ 𝑇𝑥

⊥𝑁, ∀ 𝑥 ∈  𝑁.                      (6) 

 

(iii) 𝐹2(𝐷⊥) is a distribution on 𝑁 . 

 

Some particular classes of semi-invariant 

submanifolds are defined as follows. Let 𝑝 and 

𝑞 be the ranks of the distributions 𝐷 and 𝐷⊥ 

respectively. If 𝑞 = 0, that is 𝐷⊥ = {0}, we say 

that 𝑁 is an 𝐹 −invariant submanifold of 𝑀. If 

𝑝 = 0, that is 𝐷 = {0}, we call 𝑁 an 𝐹 −anti-

invariant submanifold of 𝑀. 
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If 𝑝𝑞 ≠ 0 then 𝑁 is called a proper semi-

invariant submanifold. Now, we denote by 𝐷̃ 

the complementary orthogonal vector bundle 

to 𝐹(𝐷⊥) in 𝑇⊥𝑁. If 𝐷̃ = {0} then we say that 

𝑁 is a normal 𝐹 −semi-invariant submanifold. 

Thus, 𝑁 is an 𝐹 −invariant, respectively 

𝐹 −anti-invariant, if and only if: 

 

𝐹(𝑇𝑁) ⊂ 𝑇𝑁 (resp. 𝐹(𝑇𝑁) ⊂ 𝑇⊥𝑁).        (7) 

 

𝑁 is normal 𝐹 −semi-invariant if and only if: 

 

𝐹(𝐷⊥) = 𝑇⊥𝑁.            (8) 

 

Examples 3.2. 

1) For Example 2.2.1 we obtain the classical 

concept of 𝐶𝑅 −submanifold of Bejancu [4]; 

the condition iii) is satisfied from 𝐽2 = −𝐼. 

2) For Example 2.2.2 we obtain the notion of 

semi-invariant submanifold; for the almost 

parahermitian case see [1] while for the second 

case see [3]. The condition iii) is satisfied again 

from 𝑃2 = −𝐼. 

3) For Example 2.2.3 we obtain the notion of 

semi-submanifold [4] with 𝜉 ∈ 𝑇⊥𝑁 . This last 

condition implies 𝑇𝑁 ⊂ 𝑘𝑒𝑟 𝜂 and since 

𝜙|𝑘𝑒𝑟 𝜂 is an almost complex structure we get 

iii). 

4) For Example 2.2.4 we obtain the concept of 

semi-submanifold from [10] with 𝜉 ∈ 𝑇⊥𝑁. 

Again this condition means 𝑇𝑁 ⊂ 𝑘𝑒𝑟 𝜂 and 

since 𝜙|𝑘𝑒𝑟 𝜂 is an almost product structure we 

have iii). 

5) The condition (iii) does not appears in [11]. 

 

Returning to the Definition 3.1 we deduce that 

the tangent bundle 𝑇𝑁 and the normal bundle 

𝑇⊥𝑁 of a semi-invariant submanifold 𝑁 have 

the orthogonal decompositions: 

 

𝑇𝑁 = 𝐷 ⊕  𝐷⊥, 𝑇⊥𝑁 = 𝐹(𝐷⊥) ⊕ 𝐷̃.         (9) 

 

Then we denote by 𝑃 and 𝑄 the projection 

morphisms of 𝑇𝑁 on 𝐷 and 𝐷⊥ respectively 

and obtain for 𝑋 = 𝑃𝑋 + 𝑄𝑋 ∈ 𝛤(𝑇𝑁 ): 

  

𝐹𝑋 =  𝜑𝑋 +  𝜔𝑋          (10) 

 

where we put: 

  

𝜑 = 𝐹 ◦ 𝑃,   𝜔 = 𝐹 ◦ 𝑄.         (11) 

  

Thus 𝜑 is a tensor field of (1, 1) −type on 𝑁 

while 𝜔 is a 𝐹 (𝐷⊥) −valued vector 1 −form 

on 𝑁 . Thus we derive: 

Proposition 3.3. Let 𝑁 be a semi-invariant 

submanifold of a (𝑔, 𝐹, +1) −manifold 𝑀. 

Then: 

(iv) 𝑁 is a (𝑔, 𝜑, +1) −manifold. 

(v) 𝐹2(𝐷⊥) is a vector subbundle of 𝐷⊥. 

(vi) The vector bundle 𝐷̃ is 𝐹 −invariant i.e. 

for all 𝑥 ∈ 𝑁 we have: 𝐹(𝐷̃𝑥) ⊂ 𝐷̃𝑥. 

Proof. (iv) By definition, 𝑔 is a Riemannian 

metric on 𝑁 and 𝜑 is a tensor field of (1, 1)-

type on 𝑁; we need only to show (5). By using 

(1) for 𝐹 we obtain for 𝑋, 𝑌 ∈ 𝛤(𝑇𝑁): 

 

𝑔(𝜑𝑋, 𝑌)  =  𝑔(𝐹𝑃𝑋, 𝑌 ) = 𝑔(𝐹𝑃𝑋, 𝑃𝑌)  
= −𝑔(𝑃𝑋, 𝐹𝑃𝑌) = 

=   −𝑔(𝑋, 𝐹𝑃𝑌 )  =  −𝑔(𝑋, 𝜑𝑌 ). 
 

(v) Take 𝑋 ∈ 𝛤(𝐷) and 𝑌 ∈ 𝛤(𝐷⊥) in (5): 

𝑔(𝑋, 𝐹2𝑌 )  =  −𝑔(𝐹𝑋, 𝐹𝑌 )  =  0 since 𝐹𝑋 ∈
𝛤(𝐷) and 𝐹𝑌 ∈ 𝛤(𝑇⊥𝑁 ). Hence 𝐹2(𝐷⊥) is 

orthogonal to 𝐷 and by condition (iii) we 

deduce that 𝐹2(𝐷⊥) is a vector subbundle of 

𝐷⊥. 

(vi) Take 𝑋 ∈ 𝛤(𝑇𝑁 ), 𝑌 ∈ 𝛤(𝐷⊥) and 𝑉 ∈
𝛤(𝐷̃). Then we obtain: 

 

𝑔(𝐹𝑉, 𝑋) = −𝑔(𝑉, 𝐹𝑋)  = −𝑔(𝑉, 𝜑𝑋 + 𝜔𝑋)
= 0 

 and: 

 

 𝑔(𝐹𝑉, 𝐹𝑌) = −𝑔(𝑉, 𝐹2𝑌 ) = 0 

 

 since 𝜑𝑋 ∈ 𝛤(𝐷), 𝜔𝑋 ∈ 𝛤(𝐹𝐷⊥) and 𝐹2𝑌 ∈
𝛤(𝐷⊥). Thus 𝐹𝐷̃ is orthogonal to 𝑇𝑁 ⊕ 𝐹𝐷⊥, 

that is 𝐹𝐷̃ is a vector subbundle of 𝐷̃. This 

completes the proof of the proposition.         ∎  

In the non-degenerated case we have equalities 

for the above inclusions: 

Corollary 3.4. Let 𝑁 be a semi-invariant 

submanifold of a nondegenerate 

(𝑔, 𝐹, +1) −manifold 𝑀 . Then: 

1) the above distributions satisfy: 

 

𝐹 (𝐷) = 𝐷, 𝐹2(𝐷⊥) = 𝐷⊥, 𝐹(𝐷̃) = 𝐷̃.    (12) 

 

2) 𝐷⊥ and 𝐹 (𝐷⊥) are Lagrangian distribution 

on (𝑇𝑀, Ω). In particular if 𝑁 is a normal semi-
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invariant submanifold then 𝑇⊥𝑁 is a 

Lagrangian submanifold in (𝑇𝑀, Ω). 

Proof. We need to prove only 2). 

2.1) Let 𝑋, 𝑌 ∈ 𝛤(𝐷⊥); then Ω(𝑋, 𝑌) =
𝑔(𝐹𝑋, 𝑌) = 0 since 𝐹𝑋 ∈ 𝛤(𝑇⊥𝑁) while 𝑌 ∈
𝛤(𝑇𝑁 ). 

2.2) Let 𝑋, 𝑌 ∈ 𝛤(𝐹 (𝐷⊥)); then Ω(𝑋, 𝑌) =
𝑔(𝐹𝑋, 𝑌) = 0 since 𝐹𝑋 ∈ 𝛤(𝑇𝑁) while 𝑌 ∈
𝛤(𝑇⊥𝑁).               ∎ 

 

4. INTEGRABILITY OF 

DISTRIBUTIONS ON A SEMI-

INVARIANT SUBMANIFOLD    
 

Let 𝑁 be a semi-invariant submanifold of a 

(𝑔, 𝐹, +1) −manifold 𝑀. Then we recall that 

the Nijenhuis tensor field of 𝐹 is defined as 

follows ([4]): 

 

𝑁𝐹(𝑋, 𝑌) = [𝐹𝑋, 𝐹𝑌] + 𝐹2[𝑋, 𝑌] −
𝐹[𝐹𝑋, 𝑌] − 𝐹[𝑋, 𝐹𝑌],          (13) 

 

for any 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀). In a similar way, the 

Nijenhuis tensor field of 𝜑 on 𝑁 is given by: 

 

𝑁𝜑(𝑋, 𝑌) = [𝜑𝑋, 𝜑𝑌] + 𝜑2[𝑋, 𝑌] −

𝜑[𝜑𝑋, 𝑌] − 𝜑[𝑋, 𝜑𝑌],         (14) 

 

for any 𝑋, 𝑌 ∈ 𝛤(𝑇𝑁). We recall that a tensor 

field of (1, 1) −type defines an integrable 

structure on a manifold if and only if its 

Nijenhuis tensor field vanishes identically on 

the manifold. Now we obtain necessary and 

sufficient conditions for the integrability of 𝐷 

and 𝐷⊥in terms of Nijenhuis tensor fields of 𝐹 

and 𝜑. 

Theorem 4.1. Let 𝑁 be a semi-invariant 

submanifold of a (𝑔, 𝐹, +1) −manifold 𝑀. 

Then the following assertions are equivalent: 

1) 𝐷 is an integrable distribution. 

2) The Nijenhuis tensor field of 𝜑 satifies: 

 

𝑄 ◦ 𝑁𝜑 = 0, ∀𝑋, 𝑌 ∈ 𝛤(𝐷).         (15) 

 

3) The Nijenhuis tensor fields of 𝐹 and 𝜑 

satisfy the equality: 𝑁𝐹 = 𝑁𝜑 on 𝐷. 

Proof. Firstly, we note that 𝐷 is integrable if 

and only if: 

𝑄([𝑋, 𝑌 ]) = 0, ∀𝑋, 𝑌 ∈ 𝛤(𝐷).        (16) 

 

Since the last three terms in the right side of 

(14) lie in 𝛤(𝐷) we deduce that: 

 

𝑄 ◦ 𝑁𝜑(𝑋, 𝑌) = 𝑄([𝐹𝑋, 𝐹𝑌 ]), ∀𝑋, 𝑌 ∈

𝛤(𝐷).            (17) 

 

As 𝑀 is nondegenerate we deduce that 𝜑 is an 

automorphism on 𝛤(𝐷). Thus the equivalence 

of 1) and 2) follows directly. Next, we obtain 

for any 𝑋, 𝑌 ∈ 𝛤(𝐷): 

 

𝑁𝐹(𝑋, 𝑌) = 𝑁𝜑(𝑋, 𝑌) + 𝐹𝜔([𝑋, 𝑌 ]) −

𝜔([𝜑𝑋, 𝑌]) − 𝜔([𝑋, 𝜑𝑌 ]).         (18) 

 

If 𝐷 is integrable then the last three terms of 

(18) vanishes and this yields 3). Conversely, 

suppose that 𝑁𝐹 = 𝑁𝜑 on 𝐷; then: 

 

𝐹𝜔([𝑋, 𝑌]) = 𝜔([𝜑𝑋, 𝑌] + [𝑋, 𝜑𝑌]).          (19) 

 

Obviously the right-hand-side of the previous 

equation is in 𝛤(𝐹(𝐷⊥)) ⊂ 𝛤(𝑇𝑏𝑜𝑡𝑁). On the 

other hand, the left-hand-side is in 𝛤(𝐹2𝐷⊥) ⊂
𝛤(𝑇𝑁); we conclude that both sides in (19) 

must vanish. 

Finally, from: 𝐹2𝑄([𝑋, 𝑌 ]) = 0 and 𝐹2 

automorphism of 𝛤(𝑇𝑀 ) we deduce 1).  ∎ 

  

Remark 4.2. For Example 1.2.1 the 

equivalence of 1) and 2) is exactly the 

Theorem 2.2. of [4] while the equivalence of 

1) and 3) is the Theorem 2.1. of [4]. 

Now, we consider 𝑋, 𝑌 ∈ 𝛤(𝐷⊥). Then taking 

into account that 𝜑𝑋 = 𝜑𝑌 = 0 we get: 

 

𝑁𝜑(𝑋, 𝑌) = 𝐹2𝑃[𝑋, 𝑌]         (20) 

 

and this enables us to state the following: 

Theorem 4.3. Let 𝑁 be a semi-invariant 

submanifold of a nondegenerate 

(𝑔, 𝐹, +1) −manifold. Then 𝐷⊥ is integrable if 

and only if the Nijenhuis tensor field of 𝜑 

vanishes identically on 𝐷⊥. 

Remark 4.4. For Example 1.2.1 the above 

result is the Theorem 2.3. of [4]. 

  

5. CONCLUSION 
 

We can connect our study with the almost 

symplectic geometry and this fact opens some 
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possible further applications in physical 

sciences having as an example the relationship 

between CR-structures and Relativity pointed 

out in the last Chapter of [4]. 

Also the second part of the above Corollary 

3.4. is extremely important since it relates the 

geometry of semi-invariant submanifolds with 

the almost symplectic geometry, a topic very 

studied from the point of view of applications 

in Analytical Mechanics. 
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