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ABSTRACT: This paper introduces a generalized similarity measure for hierarchical collections of
intuitionistic fuzzy sets (IFS), where elements are organized as trees or multi-level structures. The
proposed measure extends the classical framework of distances between IFSs (Szmidt & Kacprzyk,
2000) and existing similarity approaches for flat collections by rigorously integrating both the local
similarity between IFSs and the structural similarity derived from optimal subtree matching. The
method relies on a recursive formulation that combines structural alignment via the Hungarian
algorithm with a weighted aggregation of local and structural components. The main contribution
consists in defining a completely new similarity measure for comparing hierarchical IF'S collections-
absent in current literature-and proving its formal properties of normalization, symmetry, and
reflexivity. The paper also provides conceptual discussions, comparisons with related work,
limitations, and directions for future research.
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1. INTRODUCTION and several extensions (e.g., [FS multisets), as
illustrated in Tripathy et al. (2015).

Fuzzy set theory was introduced by Zadeh Several overviews also appeared, such as the
(1965) to model phenomena that cannot be survey by Nikolova et al. (2002).
described clearly in terms of binary Between 2010 and 2020, the concept of IFS
membership (,,belongs”/,,does not belong”™). expanded further toward weighted variants,
Intuitionistic fuzzy sets (IFS), introduced by interval-valued  structures, and related
Atanassov  (1986), represent a natural generalizations, including applications in
extension of classical fuzzy sets by explicitly multi-criteria  analysis, group  decision-
distinguishing between membership, makingand the neutrosophic framework
nonmembership, and uncertainty defined as. (Smarandache, ~ 2005), ~ which  extends
This framework has proven particularly useful intuitionistic fuzzy theory.

in situations where both membership and In recent years (2020-present), research has
nonmembership information carry conceptual increasingly focused on collections,
significance. operations, and similarity measures defined for
During the 2000-2010 period, substantial families of IFSs. The work of Sharma et al.
research explored various properties of IFSs, (2023) is commonly regarded as the formal
including cardinality, aggregation, ordering, starting point of this new direction, as it

provides explicit definitions of operations and
324
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structural properties for IFS collections. This
line of work was subsequently extended by
Saini et al. (2025), who developed similarity
and distance measures for comparing
collections of IFSs, enabling applications in
multi-criteria decision analysis and fuzzy
machine learning.
A collection of IFSs is a structured ensemble
of intuitionistic  fuzzy sets, denoted
C={A;1i€l}, where each A; is an
intuitionistic fuzzy set defined on a universe
X;.
IFS  collections extend the analytical
framework from a single set X to an entire
family of IFSs, enabling the definition of
operations and relations between them
(Sharma et al., 2023).
Collections may be structured as:

e unordered sets,

e sequences,

o indexed families,

e hierarchical structures.
For two IFSs A;, A; € C, one may define

ir 4
(Sharma et al., 2023):
e Union:

A; U4

= (x, max (p;(x), uj(x)), min (v;(x), v;(x)));
o Intersection:
A; N A
= (x, min (u;(x), 1 (x)), max (v;(x), v;(x)));
e Complement:
A7 = (%, vi(x), pi(x))-

These operations preserve standard algebraic
properties such as commutativity,
associativity, and the De Morgan laws.
For two collections C;and C,, equivalence

(C1=Cy)
and dominance

(€1 =2Cy)
relations can be defined based on the
membership and nonmembership values of
their component sets (Saini et al., 2025).
A similarity measure S(Cq, C,) quantifies the
closeness between two IFS collections, even
when they are defined over different universes.
Such generalized measures are used in
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decision analysis, pattern recognition, and
fuzzy learning (Saini et al., 2025).

From an evolutionary perspective, one can
observe a shift from the “element — set” level
(Zadeh, Atanassov) to the “set — collection of
sets” level (Sharma, Saini) — that is, a meta-
fuzzy approach, where the objects of analysis
are the intuitionistic fuzzy sets themselves.

Most  mathematical and  engineering
applications that wuse IFS-classification,
decision-making, pattern recognition,

semantic analysis-rely on comparing two IFSs
or two flat (non-hierarchical) collections.

In the current literature, distance and similarity
measures are constructed predominantly at the
level of IFS pairs, using L1 and L2 distances,
Hamming measures, generalized Jaccard
indices, etc. (Szmidt & Kacprzyk, 1999;
Atanassov, 2012; Peng et al., 2017).

However, in numerous modern applications,
fuzzy data arise within composite, frequently
hierarchical structures, such as:

— ontological classifications;

— multi-level aggregation schemes;

— fuzzy collections with variable granularity;
— tree-structured representations in linguistic
analysis;

— multi-agent models involving higher-order
aggregations.

Such structures require a similarity measure
that accounts for both the local content (i.e., the
underlying IFSs) and the hierarchical
organization in which they are embedded.

To the best of our knowledge, the existing

literature does not provide a rigorous,
recursive, normalized, and practically
deployable measure for comparing two

hierarchical collections of [FSs—namely, two
trees whose nodes are annotated with IFS
values and which may have different numbers
of children.

The present work introduces a similarity
measure specifically designed for hierarchical
collections of IFSs, a topic not addressed in
current research. The proposed contribution is
both conceptual and technical, and its
methodological framework is sufficiently
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general to be applied across a wide range of
domains.

2. PRELIMINARIES

The concept of intuitionistic fuzzy set (IFS)
was introduced by Atanassov, K. T. (1986).
An IFS A over a finite universe X is defined
as a collection of triplets:

A= {(xua(x),va(x)) | x € X},

where p,(x) € [0,1] denotes the degree of
membership, v4(x) € [0,1] denotes the degree
of non-membership, and the condition
Ua(x) +v4(x) < 1 holds.

The most widely used distance between two
IFSs is the normalized L;distance (Szmidt &
Kacprzyk, 2000):

1
dirs(4,B) = 57 D (1 HaG) = Bs(O) T+ s =G D (1)

x€X

This distance takes into account both
membership and non-membership; the
denominator 2 | X | ensures normalization to
the interval [0,1].

The corresponding similarity measure is given
by:

Sirs(4,B) = 1 —dps(4, B). 2

It satisfies s;ps(4,4) = 1, is symmetric, and
1s linear in the absolute differences.

3. PROPOSED METHOD: A
HIERARCHICAL SIMILARITY
MEASURE FOR INTUITIONISTIC
FUZZY SET COLLECTIONS (H-
IFS SIMILARITY)

3.1. Motivation

The proposed method is motivated by:

« the limitations identified in existing
similarity measures;

» the natural constraints of IFSs (for each
element: u +v < 1);

» the standard requirements for a similarity
measure (symmetry, normalization,
monotonicity, and S = 1 if and only if the
collections are identical).

We introduce a new hierarchical similarity
measure for intuitionistic fuzzy set collections
(H-IFS similarity), extending classical IFS

similarity metrics to multi-level structured
collections. Existing similarity measures for
intuitionistic fuzzy sets (IFS) and IFS
collections (Yunianti, 2023; Li, 2022; Garg,
2021; Xu & Yager, 2020) operate either at the
level of individual elements or within flat, non-
hierarchical structures. However, real-world
IFS data frequently arise within hierarchical or
multi-level organizations, including:

» multi-level decision criteria,

* hierarchical risk frameworks,

» multi-stage evaluation processes,

* nested groups of experts,

* cluster—subcluster semantic models.

To address these scenarios, we propose a new
similarity measure for hierarchical collections
of IFSs (H-IFS Similarity), which
incorporates:

* a level-wise formulation of similarity;

* aggregation using structural weights w(¥£)
specific to the hierarchy;

* penalization of deep structural discrepancies
between collections;

* a dedicated normalization approach;

 a multi-level treatment for stratified
collections (L4, Ly, ..., Ly);

» avoidance of the computational overhead
associated with generalized double-sum
formulations (e.g., Yunianti, 2023).

3.2. Generalized Similarity Measure for
Hierarchical Collections
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We define the similarity between two
hierarchical collections as a weighted average
of the similarities between corresponding
nodes, obtained through an alignment of the
two trees. Node-level similarity is computed
recursively, combining both the similarity
between the associated IFSs and the similarity
between their children. An illustrative example
will be used later to verify the correctness of
the computations.

Our goal is to define a measure

Sim(73,73) € [0,1]

that compares two hierarchical collections of

IFSs -that is, two trees (or hierarchical

subgraphs) whose basic unit or node is an

intuitionistic fuzzy set (IFS). The measure

must integrate:

e local similarity between the IFSs at
corresponding nodes, and

e structural similarity between the
subtrees/children, including the optimal
matching between child nodes.

We propose a recursive similarity measure

with two controllable parameters:

e «a € [0,1] weighting between node-level
and structural similarity,

e vy € [0,1] penalty for unmatched children
differences in arity.

The measure is deterministic, symmetric, and
normalized to the interval [0,1]. (We do not
claim metric properties-this is a similarity
measure, not necessarily a metric distance.)

3.3. Components of the Measure

Similarity between two IFSs (local
component)

We consider the normalized L, distance given
by equation (1) and the local similarity defined
by equation (2).

SimNode(u, v) = a sips(Ay, Ay) + (1 — @) Schitdren (C (1), C(v)).
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Child Matching — Structural Component

Let u and v be nodes in the trees A, and A4,,,
respectively. We denote their sets of children,
with arities nand m, as

C(w) ={uyg, ..., un},C(v) = {vq, ..., U }-
We construct the similarity matrix Sof size
n X m, whose entries are

S;j = SimNode(u;, v;),

see equation (4) for the recursive definition.

To compare the subtrees, we compute an
optimal matching between the children that
maximizes the sum of pairwise similarities.
This matching is obtained using the Hungarian
algorithm. We denote the optimal sum by

Smatch(c(u)' C(U))
We then normalize this sum as follows:

Smatc C ’ c
Schildren(C(u)' C(U)) = n}iix ((I;L) m)(v))

G3)

This normalization penalizes differences in
arity: if one tree has additional children, these
reduce the overall score (through the division
by max (n,m)). A more sophisticated penalty
factor could be introduced, but the formulation
above is simple, normalized, and sensitive to
the number of children.

Note: The matching is defined only on child—
child pairs; if n # m, some children remain
unmatched, and these do not contribute to the
optimal sum.

SimNode - Recursive Definition (Node +
Structure)

For two nodes u and v (each containing an IFS

Ay, A, and their respective sets of children),
we define:

4
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The parameter a € [0,1] controls the relative
importance of the local IFS similarity versus
the similarity of the children’s structure.

Observations:

* If u and v are leaves (i.c., have no children),
then Sguiiqren = 1 by convention (or Sgpijgren =
0, depending on the chosen convention; we
recommend 1 to express that ,the local
structure is identical”). In this case, SimNode
reduces to the local similarity sjgs.
» The formula is recursive: computing Scpiigren
requires evaluating SimNodefor the children;
the recursion terminates at the leaves.

SimTree - Similarity Between Roots (Final
Measure)

If 77 and 7, have roots r; and 75,

SimTree(77,7,) = SimNode(r, 1) (5)

This is the final value in [0,1].

3.4. Properties

1. Normality: For any two hierarchical
collections 73, 75,

0 < SimTree(T,,T;) < 1.

e Sirs € [0,1], from equations (1)-(2).

» The matching optimizes a sum of
similarities in [0,1].

» Normalization by max (n, m) yields a value
in [0,1].

e The convex combination in (5) remains
within the interval.

e The recursion preserves the interval.

2. Reflexivity: SimTree(T,7) = 1 (if the
matching selects identical pairs).

All differences are zero, the similarity matrix
is filled with 1, the matching maximizes 1,
and the structure is identical.

3. Symmetry: Since the L distance is
symmetric, the measure is symmetric
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provided the matching is symmetric (the
Hungarian algorithm yields the same sum
regardless of argument order). Thus,
SimTree(7;,7,) = SimTree(73, 77).

4. Parameter dependence: a controls the
balance between node-level and structural
similarity; the choice depends on the
application. For example, « close to 1 —
emphasis on local content (IFS), aclose to 0
— emphasis on hierarchical structure.

5. Linearity in absolute differences: The

local distance is d;p5(4, B) = ﬁz la—">bl.

This is a strictly linear function in the
absolute differences.

A convex combination of linear functions
remains linear.

6. Complexity: 1f the tree has a total of N
nodes and at each level the matching uses the
Hungarian algorithm on k X k submatrices,
the worst-case cost is O(Nk3)(practically
O(N3)in dense cases).

For large collections, heuristics (e.g., greedy
matching) or restrictions (e.g., matching only
between children with local score above T)
are recommended.

The measure does not guarantee the triangle
inequality- it 1s a practically useful similarity,
not a metric distance.

3.5. Algorithm (runnable implementation in
Maple / Python)

In summary, the algorithm proceeds through
the following steps:

1. implementing d;rsand s;psaccording to
equations (1) - (2);

2. constructing the similarity matrix between
the children (via a recursive call to
SimNodeProc);

3. determining the optimal matching sum
using a deterministic Hungarian algorithm
(which may later be replaced by a greedy
heuristic);
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4. normalizing according to equation (3) and
applying the structural penalty y (default
value 0);

5. combining the local and structural
components with a according to equation
(4), and returning the final value simTree
according to equation (5);

6. including the numerical example
presented in the section Numerical
example (X = {x1,x,}, A4, 4,, B4, By, B3),
with the following outputs:

o the pairwise distances and
similarities (the s;pgmatrix);
Smatch@nd Schildren’
the aggregated s;zsbetween the
roots;

o the final value SimTree, which
should be 0.82 for ¢ = 0.6 and

Observation. The procedure
OptimalMatchingSum computes the sum of
the optimally selected pairs; if n # m, the
matrix is extended with zero-valued fillers to
make it square, the Hungarian method then
maximizes the resulting sum, and the value is
finally normalized by max (n, m).

Table 1. summarizes the main conceptual and
computational differences between existing
methods in the literature and the proposed
H-IFS approach, highlighting the support for
hierarchical structure, level weighting, and the
computational complexity associated with
each model.

y = 0.
Method Hierarchical Level Complexity | Double | Suitable for structured
weights sum data
Yunianti (2023) X 0(n?) v X
Li (2022) X X 0(n) X X
Garg (2021) X X 0(n) X X
Xu & Yager X X 0(n) X X
(2020)
Proposed H-IFS \4 v 0(n) X v (designed for it)

Table 1. Comparative analysis of existing [FS-based similarity methods and the proposed H-IFS

3.6. Numerical Example

We use two collections (rooted trees with
children). Universe X = {x;, x,}. Nodes and
IFSs:

Ay :x1:(0.6,0.2), x,:(0.5,0.3),
A, :x4:(0.8,0.1), x5:(0.4,0.4).

The collection/tree T has root R, (aggregate)
with children A4, A4,.
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model

B, :x;:(0.65,0.2), x,: (0.45,0.35),
B, :x:(0.78,0.12), x,: (0.35,0.45),
B;  :x;:(0.4,0.5), x,: (0.6,0.2).

The collection/tree Tz has root Rgwith
children B4, By, B3. We compute
SimTree(Jy, Jg) with @ = 0.6 (meaning:
60% local content, 40% structure).

Step 1. Computing d;rs and s;pg for all
pairs 4;, B]-
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Using formulas (1) and (2):

1
dies(ABY =5 ) (101 + v D), sies

xe{x1,x2}

=1—ds.

1. Ajvs By

o forx;:lul=10.6—-0.65]|=
0.05, |vI=10.2—-0.2 |=0.00.
Sum = 0.05.

o forxy,:lul=105-045]|=
0.05, [vI=]0.3-0.35|=0.05.
Sum = 0.10.

o Total sum = 0.05+ 0.10 = 0.15.
d =0.15/4 = 0.0375.
s=1-0.0375 = 0.9625.

2. A1VS Bz
o x1:10.6—0.781=0.18, [ 0.2—-0.12 |
= 0.08= = 0.26.

o X,:105-0.35]=0.15, | 0.3 —
0.45 |= 0.15= = 0.30.
Total = 0.26 + 0.30 = 0.56.
d = 0.56/4 = 0.14.
s=1-0.14 = 0.86.

o
3. Ayvs By
o x1:106—-04[=0.20, [0.2—-05[=
0.30= = 0.50.
o x:105—-0.61=0.10, [03-0.2]|=
0.10=> = 0.20.

Total = 0.50 + 0.20 = 0.70.
d =0.70/4 = 0.175.
s =1-0.175 = 0.825.

o
4. A2VS Bl
o x1:108-0.65[=0.15 10.1-0.2 |
= 0.10= = 0.25.

o Xp:104—-0.451]=0.05, |04 —
0.35 |= 0.05= = 0.10.
Total = 0.25 + 0.10 = 0.35.
d = 0.35/4 = 0.0875.

o s§=1-0.0875=0.9125.
5. A,vs B,
o x1:108-0.781=0.02, 10.1—-0.12|
= 0.02= = 0.04.

o x:104-0.35]=0.05 104 -
0.45 |= 0.05= = 0.10.
Total = 0.04 + 0.10 = 0.14.
d =0.14/4 = 0.035.

o s=1-0.035=0.965.

6. A2VS B3
o x%:108—-041=040, [|0.1-0.5]|=
0.40= = 0.80.

o x3:10.4—0.6|=0.20, | 0.4—
0.2 |= 0.20= = 0.40.

Total = 0.80 + 0.40 = 1.20.

d = 1.20/4 = 0.30.

s=1-0.30 = 0.70.

This yields the similarity matrix:

52(0.9625 0.86 0.825)
09125 0965 0.70”

(rows: Ay, A,; columns: By, B,, B3).

Step 3. Local similarity between roots
(optional)

If the roots R,, Rghave their own IFSs (e.g.,
arithmetic means of their children), we
compute S;rs(Ry, Rg). The aggregate is
computed as the element-wise arithmetic
mean:

e R,y(Medium Al, A2): for x;: u = (0.6 +
0.8)/2=0.7,v=(0.2+0.1)/2 = 0.15.
forx,: u=(05+0.4)/2=045v =
(0.3+0.4)/2 = 0.35.

e Rp(Medium By, By, B3): for xq: p =
(0.65+0.78+0.4)/3 =1.83/3 =
0.61,v=(0.2+0.12+0.5)/3 =
0.82/3 = 0.273333. for x,: u = (0.45 +
0.35+0.6)/3 =1.40/3 =
0.4666667, v = (0.35 + 0.45 + 0.2)/
3=1.0/3 = 0.3333333.

Distance calculations (1):

e forxy;:|lpul=107-0.61[=0.09 |vI|=
| 0.15 —0.273333 |= 0.123333= sum =
0.213333.

o forx,:| ul=]0.45—0.4666667 |=
0.0166667, | v |=]0.35—0.3333333 |
= 0.0166667= sum = 0.0333334.

e total =0.213333 + 0.0333334 =
0.2466664.
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e d(R4 Rp) = 0.2466664/4 =
0.0616666.

e Sips(R4,Rg) =1 —0.0616666 =
0.9383334.

(Rounds for clarity: sigs(Ry4, Rp) =
0.9383333.)

Step 4. Final combination (formula (4))
Choose @ = 0.6. Then

SimTree = a - sips(R4,Rp) + (1 — a) -
Schilden

Plug-in numeric:

e - sps = 0.6Xx 09383333 =
0.56299998.

. (1 - (X) * Schildren = 0.4 X 0.6425 =
0.257.

Sum: SimTree = 0.56299998 + 0.257 =

0.82

Interpretation: The generalized similarity
between the two hierarchical collections is
0.82, a relatively high value, showing that
both the local components (nodes) and the
structural alignment (matched children) are
quite close.

3.7. Parametrii, variante si recomandari
practice

Choice of a:

e a = 1— strictly compares the IFS at
nodes (used when the structure is
irrelevant).

e a = 0— just compare the
structure/arrangement of the children
(useful when hierarchy matters more).

e Practical recommendation: @ € [0.5,0.8]
when nodes and structure are of
comparable importance.
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Penalty for arity: the adopted form (division by
max (n,m)) is simple; one may introduce a factor
y so that:

Smatch In—m|

Schildren = max (n,m) 1-vy
)

),

max (n, m)

with y € [0,1] controlling the extent to which
differences in arity are penalized.

Complexity: For large collections, we
recommend the following:

» pre-filter children using a minimum local
similarity threshold tbefore performing the
matching;

* use greedy matching (0O (nm)) instead of the
Hungarian algorithm (0 (k?®)); or

* apply parallelization at the subtree level.

Stability: The measure is numerically stable
(it relies on absolute differences), but it may
be sensitive to extreme values. If robustness
to outliers is required, one may use robust
averages (e.g., the median) for the root-level
aggregation, as well as robust IFS similarity
measures (e.g., Jensen—Shannon- type
measures applied to the /v distributions).

4. LIMITATIONS AND FUTURE
DIRECTIONS

Limitations

* The computational complexity is high,
0(k®), due to the use of the Hungarian
algorithm.

* The definition assumes a common universe
X for all IFSs.

* The current formulation does not
incorporate node-level or hierarchy-level
weights.

* Potential scalability issues may arise for
very large trees (exceeding 10,000 nodes).

Future Directions

* Developing approximate matching
algorithms (e.g., greedy strategies, blossom-
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based reductions).

* Introducing weights at the level of hierarchy
or individual children.

* Extending the model to trees with fuzzy
branches or probabilistic tree structures.

* Applying the measure to semantic
ontologies, hierarchical text analysis, and
structural classification tasks.

* Investigating whether the measure can
satisfy properties of generalized metric
spaces.

5. CONCLUSIONS

Collections of intuitionistic fuzzy sets
constitute an essential conceptual tool in
modern uncertainty analysis. They provide a
modular  framework applicable  across
numerous domains and open several
fundamental and applied research directions.
In this study, we introduced a generalized,
recursive, and structurally informed similarity
measure for hierarchical collections of
intuitionistic fuzzy sets. The method naturally
integrates both local information (via the
similarity between IFSs) and structural
information (through optimal matching
between subtrees). The aim of this work was to
direct the reader’s attention toward this
promising line of research and to offer
bibliographic guidance for further exploration.
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