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ABSTRACT: This paper introduces a generalized similarity measure for hierarchical collections of 

intuitionistic fuzzy sets (IFS), where elements are organized as trees or multi-level structures. The 

proposed measure extends the classical framework of distances between IFSs (Szmidt & Kacprzyk, 

2000) and existing similarity approaches for flat collections by rigorously integrating both the local 

similarity between IFSs and the structural similarity derived from optimal subtree matching. The 

method relies on a recursive formulation that combines structural alignment via the Hungarian 

algorithm with a weighted aggregation of local and structural components. The main contribution 

consists in defining a completely new similarity measure for comparing hierarchical IFS collections-

absent in current literature-and proving its formal properties of normalization, symmetry, and 

reflexivity. The paper also provides conceptual discussions, comparisons with related work, 

limitations, and directions for future research. 
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1. INTRODUCTION 
 

Fuzzy set theory was introduced by Zadeh 

(1965) to model phenomena that cannot be 

described clearly in terms of binary 

membership („belongs”/„does not belong”). 

Intuitionistic fuzzy sets (IFS), introduced by 

Atanassov (1986), represent a natural 

extension of classical fuzzy sets by explicitly 

distinguishing between membership, 

nonmembership, and uncertainty defined as. 

This framework has proven particularly useful 

in situations where both membership and 

nonmembership information carry conceptual 

significance. 

During the 2000-2010 period, substantial 

research explored various properties of IFSs, 

including cardinality, aggregation, ordering, 

and several extensions (e.g., IFS multisets), as 

illustrated in Tripathy et al. (2015).  

Several overviews also appeared, such as the 

survey by Nikolova et al. (2002). 

Between 2010 and 2020, the concept of IFS 

expanded further toward weighted variants, 

interval-valued structures, and related 

generalizations, including applications in 

multi-criteria analysis, group decision-

makingand the neutrosophic framework 

(Smarandache, 2005), which extends 

intuitionistic fuzzy theory. 

In recent years (2020-present), research has 

increasingly focused on collections, 

operations, and similarity measures defined for 

families of IFSs. The work of Sharma et al. 

(2023) is commonly regarded as the formal 

starting point of this new direction, as it 

provides explicit definitions of operations and 
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structural properties for IFS collections. This 

line of work was subsequently extended by 

Saini et al. (2025), who developed similarity 

and distance measures for comparing 

collections of IFSs, enabling applications in 

multi-criteria decision analysis and fuzzy 

machine learning. 

A collection of IFSs is a structured ensemble 

of intuitionistic fuzzy sets, denoted 

𝒞 = {𝐴𝑖 ∣ 𝑖 ∈ 𝐼}, where each 𝐴𝑖 is an 

intuitionistic fuzzy set defined on a universe 

𝑋𝑖. 
IFS collections extend the analytical 

framework from a single set 𝑋 to an entire 

family of IFSs, enabling the definition of 

operations and relations between them 

(Sharma et al., 2023). 

Collections may be structured as: 

• unordered sets, 

• sequences, 

• indexed families, 

• hierarchical structures. 

For two IFSs 𝐴𝑖 , 𝐴𝑗 ∈ 𝒞, one may define 

(Sharma et al., 2023): 

• Union: 

𝐴𝑖 ∪ 𝐴𝑗
= ⟨𝑥, max⁡(𝜇𝑖(𝑥), 𝜇𝑗(𝑥)), min⁡(𝜈𝑖(𝑥), 𝜈𝑗(𝑥))⟩; 

• Intersection: 

𝐴𝑖 ∩ 𝐴𝑗
= ⟨𝑥, min⁡(𝜇𝑖(𝑥), 𝜇𝑗(𝑥)), max⁡(𝜈𝑖(𝑥), 𝜈𝑗(𝑥))⟩; 

• Complement: 

𝐴𝑖
𝑐 = ⟨𝑥, 𝜈𝑖(𝑥), 𝜇𝑖(𝑥)⟩. 

These operations preserve standard algebraic 

properties such as commutativity, 

associativity, and the De Morgan laws. 

For two collections 𝒞1and 𝒞2, equivalence 

(𝒞1 ≡ 𝒞2) 
and dominance 

(𝒞1 ⪯ 𝒞2) 
relations can be defined based on the 

membership and nonmembership values of 

their component sets (Saini et al., 2025). 

A similarity measure 𝑆(𝒞1, 𝒞2) quantifies the 

closeness between two IFS collections, even 

when they are defined over different universes. 

Such generalized measures are used in 

decision analysis, pattern recognition, and 

fuzzy learning (Saini et al., 2025).  

From an evolutionary perspective, one can 

observe a shift from the “element → set” level 

(Zadeh, Atanassov) to the “set → collection of 

sets” level (Sharma, Saini) — that is, a meta-

fuzzy approach, where the objects of analysis 

are the intuitionistic fuzzy sets themselves. 

Most mathematical and engineering 

applications that use IFS-classification, 

decision-making, pattern recognition, 

semantic analysis-rely on comparing two IFSs 

or two flat (non-hierarchical) collections.  

In the current literature, distance and similarity 

measures are constructed predominantly at the 

level of IFS pairs, using L1 and L2 distances, 

Hamming measures, generalized Jaccard 

indices, etc. (Szmidt & Kacprzyk, 1999; 

Atanassov, 2012; Peng et al., 2017). 

However, in numerous modern applications, 

fuzzy data arise within composite, frequently 

hierarchical structures, such as: 

– ontological classifications; 

– multi-level aggregation schemes; 

– fuzzy collections with variable granularity; 

– tree-structured representations in linguistic 

analysis; 

– multi-agent models involving higher-order 

aggregations. 

Such structures require a similarity measure 

that accounts for both the local content (i.e., the 

underlying IFSs) and the hierarchical 

organization in which they are embedded. 

To the best of our knowledge, the existing 

literature does not provide a rigorous, 

recursive, normalized, and practically 

deployable measure for comparing two 

hierarchical collections of IFSs—namely, two 

trees whose nodes are annotated with IFS 

values and which may have different numbers 

of children. 

The present work introduces a similarity 

measure specifically designed for hierarchical 

collections of IFSs, a topic not addressed in 

current research. The proposed contribution is 

both conceptual and technical, and its 

methodological framework is sufficiently 
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general to be applied across a wide range of 

domains. 

 

2. PRELIMINARIES  

The concept of intuitionistic fuzzy set (IFS) 

was introduced by Atanassov, K. T. (1986). 

An IFS 𝐴 over a finite universe 𝑋 is defined 

as a collection of triplets: 

𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) ∣ 𝑥 ∈ 𝑋}, 
 

where 𝜇𝐴(𝑥) ∈ [0,1] denotes the degree of 

membership, 𝜈𝐴(𝑥) ∈ [0,1] denotes the degree 

of non-membership, and the condition 

𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1 holds. 

The most widely used distance between two 

IFSs is the normalized 𝐿1distance (Szmidt & 

Kacprzyk, 2000): 

 

𝑑𝐼𝐹𝑆(𝐴, 𝐵) =
1

2 ∣ 𝑋 ∣
∑(∣ 𝜇𝐴(𝑥) − 𝜇𝐵(𝑥) ∣ +∣ 𝜈𝐴(𝑥) − 𝜈𝐵(𝑥) ∣)

𝑥∈𝑋

. (1) 

 

This distance takes into account both 

membership and non-membership; the 

denominator   2 ∣ 𝑋 ∣ ensures normalization to 

the interval [0,1]. 
The corresponding similarity measure is given 

by: 

 

𝑠𝐼𝐹𝑆(𝐴, 𝐵) = 1 − 𝑑𝐼𝐹𝑆(𝐴, 𝐵). (2) 

It satisfies 𝑠𝐼𝐹𝑆(𝐴, 𝐴) = 1, is symmetric, and 

is linear in the absolute differences. 

3. PROPOSED METHOD: A 

HIERARCHICAL SIMILARITY 

MEASURE FOR INTUITIONISTIC 

FUZZY SET COLLECTIONS (H-

IFS SIMILARITY) 

3.1. Motivation 

The proposed method is motivated by: 

• the limitations identified in existing 

similarity measures; 

• the natural constraints of IFSs (for each 

element: 𝜇 + 𝜈 ≤ 1); 

• the standard requirements for a similarity 

measure (symmetry, normalization, 

monotonicity, and 𝑆 = 1 if and only if the 

collections are identical). 

We introduce a new hierarchical similarity 

measure for intuitionistic fuzzy set collections 

(H-IFS similarity), extending classical IFS 

similarity metrics to multi-level structured 

collections. Existing similarity measures for 

intuitionistic fuzzy sets (IFS) and IFS 

collections (Yunianti, 2023; Li, 2022; Garg, 

2021; Xu & Yager, 2020) operate either at the 

level of individual elements or within flat, non-

hierarchical structures. However, real-world 

IFS data frequently arise within hierarchical or 

multi-level organizations, including: 

 

• multi-level decision criteria, 

• hierarchical risk frameworks, 

• multi-stage evaluation processes, 

• nested groups of experts, 

• cluster–subcluster semantic models. 

To address these scenarios, we propose a new 

similarity measure for hierarchical collections 

of IFSs (H-IFS Similarity), which 

incorporates: 

• a level-wise formulation of similarity; 

• aggregation using structural weights 𝑤(ℓ) 
specific to the hierarchy; 

• penalization of deep structural discrepancies 

between collections; 

• a dedicated normalization approach; 

• a multi-level treatment for stratified 

collections (𝐿1, 𝐿2, … , 𝐿𝑘); 

• avoidance of the computational overhead 

associated with generalized double-sum 

formulations (e.g., Yunianti, 2023). 

3.2. Generalized Similarity Measure for 

Hierarchical Collections 
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We define the similarity between two 

hierarchical collections as a weighted average 

of the similarities between corresponding 

nodes, obtained through an alignment of the 

two trees. Node-level similarity is computed 

recursively, combining both the similarity 

between the associated IFSs and the similarity 

between their children. An illustrative example 

will be used later to verify the correctness of 

the computations.  

Our goal is to define a measure 

 

Sim(𝒯1, 𝒯2) ∈ [0,1] 
 

that compares two hierarchical collections of 

IFSs -that is, two trees (or hierarchical 

subgraphs) whose basic unit or node is an 

intuitionistic fuzzy set (IFS). The measure 

must integrate: 

• local similarity between the IFSs at 

corresponding nodes, and 

• structural similarity between the 

subtrees/children, including the optimal 

matching between child nodes. 

We propose a recursive similarity measure 

with two controllable parameters: 

• 𝛼 ∈ [0,1] weighting between node-level 

and structural similarity, 

• 𝛾 ∈ [0,1] penalty for unmatched children 

differences in arity. 
 

The measure is deterministic, symmetric, and 

normalized to the interval [0,1]. (We do not 

claim metric properties-this is a similarity 

measure, not necessarily a metric distance.) 

3.3. Components of the Measure 

Similarity between two IFSs (local 

component) 

We consider the normalized 𝐿1 distance given 

by equation (1) and the local similarity defined 

by equation (2). 

Child Matching — Structural Component 

Let 𝑢 and 𝑣 be nodes in the trees 𝐴𝑢and 𝐴𝑣, 

respectively. We denote their sets of children, 

with arities 𝑛and 𝑚, as 

𝐶(𝑢) = {𝑢1, … , 𝑢𝑛}, 𝐶(𝑣) = {𝑣1, … , 𝑣𝑚}. 

We construct the similarity matrix 𝑆of size 

𝑛 × 𝑚, whose entries are 

𝑆𝑖𝑗 = SimNode(𝑢𝑖, 𝑣𝑗), 

 

see equation (4) for the recursive definition. 

To compare the subtrees, we compute an 

optimal matching between the children that 

maximizes the sum of pairwise similarities. 

This matching is obtained using the Hungarian 

algorithm. We denote the optimal sum by 

𝑆match(𝐶(𝑢), 𝐶(𝑣)). 
 

We then normalize this sum as follows: 

 

𝑠children(𝐶(𝑢), 𝐶(𝑣)) =
𝑆match(𝐶(𝑢), 𝐶(𝑣))

max⁡(𝑛, 𝑚)
(3) 

 

This normalization penalizes differences in 

arity: if one tree has additional children, these 

reduce the overall score (through the division 

by max⁡(𝑛,𝑚)). A more sophisticated penalty 

factor could be introduced, but the formulation 

above is simple, normalized, and sensitive to 

the number of children. 

Note: The matching is defined only on child–

child pairs; if 𝑛 ≠ 𝑚, some children remain 

unmatched, and these do not contribute to the 

optimal sum. 

SimNode - Recursive Definition (Node + 

Structure) 

For two nodes 𝑢 and 𝑣 (each containing an IFS 

𝐴𝑢, 𝐴𝑣 and their respective sets of children), 

we define: 

SimNode(𝑢, 𝑣) = 𝛼 𝑠𝐼𝐹𝑆(𝐴𝑢, 𝐴𝑣) + (1 − 𝛼) 𝑠children(𝐶(𝑢), 𝐶(𝑣)). (4)
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The parameter 𝛼 ∈ [0,1] controls the relative 

importance of the local IFS similarity versus 

the similarity of the children’s structure. 

 

Observations: 

 

• If 𝑢 and 𝑣 are leaves (i.e., have no children), 

then 𝑠children = 1 by convention (or 𝑠children =
0, depending on the chosen convention; we 

recommend 1 to express that „the local 

structure is identical”). In this case, SimNode 

reduces to the local similarity 𝑠𝐼𝐹𝑆. 

• The formula is recursive: computing 𝑠children 

requires evaluating SimNodefor the children; 

the recursion terminates at the leaves. 

 

SimTree - Similarity Between Roots (Final 

Measure) 

If 𝒯1 and 𝒯2 have roots 𝑟1 and 𝑟2, 

SimTree(𝒯1, 𝒯2)   =   SimNode(𝑟1, 𝑟2)     (5) 

This is the final value in [0,1]. 

3.4. Properties 

1. Normality: For any two hierarchical 

collections 𝒯1, 𝒯2, 

0 ≤ 𝑆𝑖𝑚𝑇𝑟𝑒𝑒(𝒯1, 𝒯2) ≤ 1. 

• 𝑠𝐼𝐹𝑆 ∈ [0,1], from equations (1)-(2). 

• The matching optimizes a sum of 

similarities in [0,1]. 
• Normalization by max⁡(𝑛,𝑚) yields a value 

in [0,1]. 
• The convex combination in (5) remains 

within the interval. 

• The recursion preserves the interval. 

2. Reflexivity: SimTree(𝒯, 𝒯) = 1 (if the 

matching selects identical pairs). 

All differences are zero, the similarity matrix 

is filled with 1, the matching maximizes 1, 

and the structure is identical. 

3. Symmetry: Since the 𝐿1distance is 

symmetric, the measure is symmetric 

provided the matching is symmetric (the 

Hungarian algorithm yields the same sum 

regardless of argument order). Thus, 

SimTree(𝒯1, 𝒯2) = SimTree(𝒯2, 𝒯1). 
4. Parameter dependence: 𝛼 controls the 

balance between node-level and structural 

similarity; the choice depends on the 

application. For example, 𝛼 close to 1 → 

emphasis on local content (IFS), 𝛼close to 0 

→ emphasis on hierarchical structure. 

5. Linearity in absolute differences: The 

local distance is 𝑑𝐼𝐹𝑆(𝐴, 𝐵) =
1

2∣𝑋∣
∑ ∣ 𝑎 − 𝑏 ∣. 

This is a strictly linear function in the 

absolute differences. 

A convex combination of linear functions 

remains linear. 

6. Complexity: If the tree has a total of 𝑁 

nodes and at each level the matching uses the 

Hungarian algorithm on 𝑘 × 𝑘 submatrices, 

the worst-case cost is 𝒪(𝑁𝑘3)(practically 

𝒪(𝑁3)in dense cases). 

For large collections, heuristics (e.g., greedy 

matching) or restrictions (e.g., matching only 

between children with local score above 𝜏) 

are recommended. 

The measure does not guarantee the triangle 

inequality- it is a practically useful similarity, 

not a metric distance. 

3.5. Algorithm (runnable implementation in 

Maple / Python) 

In summary, the algorithm proceeds through 

the following steps: 

1. implementing 𝑑𝐼𝐹𝑆and 𝑠𝐼𝐹𝑆according to 

equations (1) - (2); 

2. constructing the similarity matrix between 

the children (via a recursive call to 

SimNodeProc); 

3. determining the optimal matching sum 

using a deterministic Hungarian algorithm 

(which may later be replaced by a greedy 

heuristic); 
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4. normalizing according to equation (3) and 

applying the structural penalty 𝛾 (default 

value 0); 

5. combining the local and structural 

components with 𝛼 according to equation 

(4), and returning the final value SimTree 

according to equation (5); 

6. including the numerical example 

presented in the section Numerical 

example (𝑋 = {𝑥1, 𝑥2}, 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐵3), 
with the following outputs: 

o the pairwise distances and 

similarities (the 𝑠𝐼𝐹𝑆matrix); 

o 𝑆matchand 𝑠children; 

o the aggregated 𝑠𝐼𝐹𝑆between the 

roots; 

o the final value SimTree, which 

should be 0.82 for 𝛼 = 0.6  and 

𝛾 = 0. 

Observation. The procedure 

OptimalMatchingSum computes the sum of  

the optimally selected pairs; if 𝑛 ≠ 𝑚, the 

matrix is extended with zero-valued fillers to 

make it square, the Hungarian method then 

maximizes the resulting sum, and the value is 

finally normalized by max⁡(𝑛,𝑚).  
Table 1. summarizes the main conceptual and 

computational differences between existing 

methods in the literature and the proposed  

H-IFS approach, highlighting the support for 

hierarchical structure, level weighting, and the 

computational complexity associated with 

each model. 

 

 

 

 

 

 

 

Method Hierarchical Level 

weights 

Complexity Double 

sum 

Suitable for structured 

data 

Yunianti (2023) x x 𝑂(𝑛2) v x 

Li (2022) x x 𝑂(𝑛) x x 

Garg (2021) x x 𝑂(𝑛) x x 

Xu & Yager 

(2020) 

x x 𝑂(𝑛) x x 

Proposed H-IFS v v 𝑂(𝑛) x v (designed for it) 

Table 1. Comparative analysis of existing IFS-based similarity methods and the proposed H-IFS 

model 

3.6. Numerical Example 

We use two collections (rooted trees with 

children). Universe 𝑋 = {𝑥1, 𝑥2}. Nodes and 

IFSs: 

𝐴1 : 𝑥1: (0.6,0.2),  𝑥2: (0.5,0.3),
𝐴2 : 𝑥1: (0.8,0.1),  𝑥2: (0.4,0.4).

 

 

The collection/tree 𝒯𝐴 has root 𝑅𝐴 (aggregate) 

with children 𝐴1, 𝐴2. 

 

𝐵1 : 𝑥1: (0.65,0.2),  𝑥2: (0.45,0.35),
𝐵2 : 𝑥1: (0.78,0.12),  𝑥2: (0.35,0.45),
𝐵3 : 𝑥1: (0.4,0.5),  𝑥2: (0.6,0.2).

 

 

The collection/tree 𝒯𝐵 has root 𝑅𝐵with 

children 𝐵1, 𝐵2, 𝐵3. We compute 

SimTree(𝒯𝐴, 𝒯𝐵) with 𝛼 = 0.6 (meaning: 

60% local content, 40% structure). 

Step 1. Computing 𝒅𝑰𝑭𝑺 and 𝒔𝑰𝑭𝑺 for all 

pairs 𝑨𝒊, 𝑩𝒋 
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Using formulas (1) and (2): 

𝑑𝐼𝐹𝑆(𝐴, 𝐵) =
1

4
∑ (∣ Δ𝜇 ∣ +∣ Δ𝜈 ∣)

𝑥∈{𝑥1,𝑥2}

, 𝑠𝐼𝐹𝑆

= 1 − 𝑑𝐼𝐹𝑆. 

1. 𝐴1vs 𝐵1 

o for 𝑥1: ∣ 𝜇 ∣=∣ 0.6 − 0.65 ∣=
0.05,   ∣ 𝜈 ∣=∣ 0.2 − 0.2 ∣= 0.00. 

Sum = 0.05. 

o for 𝑥2: ∣ 𝜇 ∣=∣ 0.5 − 0.45 ∣=
0.05,   ∣ 𝜈 ∣=∣ 0.3 − 0.35 ∣= 0.05. 

Sum = 0.10. 

o Total sum = 0.05 + 0.10 = 0.15. 

o 𝑑 = 0.15/4 = 0.0375. 

o 𝑠 = 1 − 0.0375 = 0.9625. 
2. 𝐴1vs 𝐵2 

o 𝑥1: ∣ 0.6 − 0.78 ∣= 0.18,   ∣ 0.2 − 0.12 ∣
= 0.08⇒ = 0.26. 

o 𝑥2: ∣ 0.5 − 0.35 ∣= 0.15,   ∣ 0.3 −
0.45 ∣= 0.15⇒ = 0.30. 

o Total = 0.26 + 0.30 = 0.56. 

o 𝑑 = 0.56/4 = 0.14. 

o 𝑠 = 1 − 0.14 = 0.86. 
3. 𝐴1vs 𝐵3 

o 𝑥1: ∣ 0.6 − 0.4 ∣= 0.20,   ∣ 0.2 − 0.5 ∣=
0.30⇒ = 0.50. 

o 𝑥2: ∣ 0.5 − 0.6 ∣= 0.10,   ∣ 0.3 − 0.2 ∣=
0.10⇒ = 0.20. 

o Total = 0.50 + 0.20 = 0.70. 

o 𝑑 = 0.70/4 = 0.175. 

o 𝑠 = 1 − 0.175 = 0.825. 
4. 𝐴2vs 𝐵1 

o 𝑥1: ∣ 0.8 − 0.65 ∣= 0.15,   ∣ 0.1 − 0.2 ∣
= 0.10⇒ = 0.25. 

o 𝑥2: ∣ 0.4 − 0.45 ∣= 0.05,   ∣ 0.4 −
0.35 ∣= 0.05⇒ = 0.10. 

o Total = 0.25 + 0.10 = 0.35. 

o 𝑑 = 0.35/4 = 0.0875. 

o 𝑠 = 1 − 0.0875 = 0.9125. 
5. 𝐴2vs 𝐵2 

o 𝑥1: ∣ 0.8 − 0.78 ∣= 0.02,   ∣ 0.1 − 0.12 ∣
= 0.02⇒ = 0.04. 

o 𝑥2: ∣ 0.4 − 0.35 ∣= 0.05,   ∣ 0.4 −
0.45 ∣= 0.05⇒ = 0.10. 

o Total = 0.04 + 0.10 = 0.14. 

o 𝑑 = 0.14/4 = 0.035. 

o 𝑠 = 1 − 0.035 = 0.965. 
6. 𝐴2vs 𝐵3 

o 𝑥1: ∣ 0.8 − 0.4 ∣= 0.40,   ∣ 0.1 − 0.5 ∣=
0.40⇒ = 0.80. 

o 𝑥2: ∣ 0.4 − 0.6 ∣= 0.20,   ∣ 0.4 −
0.2 ∣= 0.20⇒ = 0.40. 

o Total = 0.80 + 0.40 = 1.20. 

o 𝑑 = 1.20/4 = 0.30. 

o 𝑠 = 1 − 0.30 = 0.70. 

This yields the similarity matrix: 

 

𝑆 = (
0.9625 0.86 0.825
0.9125 0.965 0.70

), 

 

(rows: 𝐴1, 𝐴2; columns: 𝐵1, 𝐵2, 𝐵3). 

Step 3. Local similarity between roots 

(optional) 

If the roots 𝑅𝐴, 𝑅𝐵have their own IFSs (e.g., 

arithmetic means of their children), we 

compute 𝑠𝐼𝐹𝑆(𝑅𝐴, 𝑅𝐵). The aggregate is 

computed as the element-wise arithmetic 

mean: 

• 𝑅𝐴(Medium A1, A2): for 𝑥1:  𝜇 = (0.6 +
0.8)/2 = 0.7,  𝜈 = (0.2 + 0.1)/2 = 0.15. 

for 𝑥2:  𝜇 = (0.5 + 0.4)/2 = 0.45,  𝜈 =
(0.3 + 0.4)/2 = 0.35. 

• 𝑅𝐵(Medium B1, B2, B3): for 𝑥1:  𝜇 =
(0.65 + 0.78 + 0.4)/3 = 1.83/3 =
0.61,  𝜈 = (0.2 + 0.12 + 0.5)/3 =
0.82/3 ≈ 0.273333. for 𝑥2:  𝜇 = (0.45 +
0.35 + 0.6)/3 = 1.40/3 ≈
0.4666667,  𝜈 = (0.35 + 0.45 + 0.2)/
3 = 1.0/3 ≈ 0.3333333. 

Distance calculations (1): 

• for 𝑥1: ∣ 𝜇 ∣=∣ 0.7 − 0.61 ∣= 0.09,   ∣ 𝜈 ∣=
∣ 0.15 − 0.273333 ∣= 0.123333⇒ sum = 

0.213333. 

• for 𝑥2: ∣ 𝜇 ∣=∣ 0.45 − 0.4666667 ∣=
0.0166667,   ∣ 𝜈 ∣=∣ 0.35 − 0.3333333 ∣
= 0.0166667⇒ sum = 0.0333334. 

• total = 0.213333 + 0.0333334 =
0.2466664. 
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• 𝑑(𝑅𝐴, 𝑅𝐵) = 0.2466664/4 =
0.0616666. 

• 𝑠IFS(𝑅𝐴, 𝑅𝐵) = 1 − 0.0616666 =
0.9383334. 

(Rounds for clarity: 𝑠IFS(𝑅𝐴, 𝑅𝐵) ≈
0.9383333.) 

Step 4. Final combination (formula (4)) 

Choose 𝛼 = 0.6. Then 

 SimTree = 𝛼 ⋅ 𝑠IFS(𝑅𝐴, 𝑅𝐵) + (1 − 𝛼) ⋅
𝑠childen 

Plug-in numeric: 

• 𝛼 ⋅ 𝑠IFS = 0.6 × 0.9383333 =
0.56299998. 

• (1 − 𝛼) ⋅ 𝑠children = 0.4 × 0.6425 =
0.257. 

Sum: SimTree   =   0.56299998 + 0.257 =
0.82 

Interpretation: The generalized similarity 

between the two hierarchical collections is 

0.82, a relatively high value, showing that 

both the local components (nodes) and the 

structural alignment (matched children) are 

quite close. 

3.7. Parametrii, variante și recomandări 

practice 

Choice of 𝛼: 

• 𝛼 ≈ 1→ strictly compares the IFS at 

nodes (used when the structure is 

irrelevant). 

• 𝛼 ≈ 0→ just compare the 

structure/arrangement of the children 

(useful when hierarchy matters more). 

• Practical recommendation: 𝛼 ∈ [0.5,0.8] 
when nodes and structure are of 

comparable importance. 

Penalty for arity: the adopted form (division by 

max⁡(𝑛,𝑚)) is simple; one may introduce a factor 

𝛾 so that: 

𝑠children =
𝑆match

max⁡(𝑛,𝑚)
⋅ (1 − 𝛾

∣ 𝑛 − 𝑚 ∣

max⁡(𝑛,𝑚)
), 

with 𝛾 ∈ [0,1] controlling the extent to which 

differences in arity are penalized. 

Complexity: For large collections, we 

recommend the following: 

• pre-filter children using a minimum local 

similarity threshold 𝜏before performing the 

matching; 

• use greedy matching (𝑂(𝑛𝑚)) instead of the 

Hungarian algorithm (𝑂(𝑘3)); or 

• apply parallelization at the subtree level. 

Stability: The measure is numerically stable 

(it relies on absolute differences), but it may 

be sensitive to extreme values. If robustness 

to outliers is required, one may use robust 

averages (e.g., the median) for the root-level 

aggregation, as well as robust IFS similarity 

measures (e.g., Jensen–Shannon- type 

measures applied to the 𝜇/𝜈 distributions). 

4. LIMITATIONS AND FUTURE 

DIRECTIONS 

Limitations 

• The computational complexity is high, 

𝑂(𝑘3), due to the use of the Hungarian 

algorithm. 

• The definition assumes a common universe 

𝑋 for all IFSs. 

• The current formulation does not 

incorporate node-level or hierarchy-level 

weights. 

• Potential scalability issues may arise for 

very large trees (exceeding 10,000 nodes). 

Future Directions 

 

• Developing approximate matching 

algorithms (e.g., greedy strategies, blossom-
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based reductions). 

• Introducing weights at the level of hierarchy 

or individual children. 

• Extending the model to trees with fuzzy 

branches or probabilistic tree structures. 

• Applying the measure to semantic 

ontologies, hierarchical text analysis, and 

structural classification tasks. 

• Investigating whether the measure can 

satisfy properties of generalized metric 

spaces. 

5. CONCLUSIONS 

Collections of intuitionistic fuzzy sets 

constitute an essential conceptual tool in 

modern uncertainty analysis. They provide a 

modular framework applicable across 

numerous domains and open several 

fundamental and applied research directions. 

In this study, we introduced a generalized, 

recursive, and structurally informed similarity 

measure for hierarchical collections of 

intuitionistic fuzzy sets. The method naturally 

integrates both local information (via the 

similarity between IFSs) and structural 

information (through optimal matching 

between subtrees). The aim of this work was to 

direct the reader’s attention toward this 

promising line of research and to offer 

bibliographic guidance for further exploration. 

REFERENCES 

[1] Atanassov, K. (1986). Intuitionistic fuzzy 

sets. Fuzzy Sets and Systems, 20(1), 87–96. 

[2] Atanassov, K. (1999). Intuitionistic fuzzy 

sets: Theory and applications. Physica-Verlag. 

[3] Atanassov, K. (2012). On intuitionistic 

fuzzy sets theory. Springer. 

[4] Atanassov, K., & Gargov, G. (1989). 

Interval-valued intuitionistic fuzzy sets. Fuzzy 

Sets and Systems, 31(3), 343–349. 

[5] Bărbăcioru, I. C., & Buneci, M. R. (2024). 

Visualization tools for fuzzy discrete 

dynamical systems. Fiability & 

Durability/Fiabilitate și Durabilitate, 33(1). 

[6] Beliakov, G., Pradera, A., & Calvo, T. 

(2007). Aggregation functions: A guide for 

practitioners. Springer. 

[7] Buneci, M. R. (2024). Randomly generated 

fuzzy discrete dynamical systems. Fiability & 

Durability/Fiabilitate și Durabilitate, 33(1). 

[8] Burkard, R., Dell’Amico, M., & Martello, 

S. (2009). Assignment problems. SIAM. 

[9] Faizi, S., Sałabun, W., Rashid, T., Zafar, S., 

& Wątróbski, J. (2020). Intuitionistic fuzzy sets 

in multi-criteria group decision making 

problems using the characteristic objects 

method. Symmetry, 12(9), 1382.  

[10] Garg, H. (2021). Novel divergence 

measures under intuitionistic fuzzy 

environment. Expert Systems with 

Applications, 176, 114894. 

[11] Intarapaiboon, P. (2016). A hierarchy-

based similarity measure for intuitionistic 

fuzzy sets. Soft Computing, 20(5), 1909–1919.  

[12] Ionici, C. F. (2014). Considerations on 

surface fatigue behavior of PM steel. În 14th 

Geoconference SGEM Conference on Nano, 

Bio Technologies (pp. 39–44). Albena, 

Bulgaria. 

[13] Kacprzyk, J., & Szmidt, E. (1993). On 

some fuzzy distance measures and their 

application in multi-criteria decision making. 

Fuzzy Sets and Systems, 57(3), 277–285. 

[14] Kóczy, L. T., Susniene, D., Purvinis, O., 

& Konczosné Szombathelyi, M. (2022). A new 

similarity measure of fuzzy signatures…. 

Mathematics, 10(16), 2923. 

[15] Kuhn, H. W. (1955). The Hungarian 

method for the assignment problem. Naval 

Research Logistics Quarterly, 2, 83–97. 

[16] Li, D., & Cheng, C. (2002). New 

similarity measure of intuitionistic fuzzy sets 

and application to pattern recognition. Pattern 

Recognition Letters, 23(1–3), 221–225. 

[17] Li, Z., & Chen, X. (2024). A new dynamic 

intuitionistic fuzzy distance for temporal IFS 

collections. Knowledge-Based Systems, 299, 

111123. 

[18] Liu, X., & Wang, G. (2010). Tree-

structured similarity measures in hierarchical 

fuzzy systems. Knowledge-Based Systems, 

23(8), 889–897. 



Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2025 

 

 

333 

 

[19] Nikolova, M., Nikolov, N., Cornelis, C., 

& Deschrijver, G. (2002). Survey of the 

research on intuitionistic fuzzy sets. Advanced 

Studies in Contemporary Mathematics, 4(2), 

127–157. 

[20] Peng, X., & Selvachandran, G. (2020). 

The distance measures of intuitionistic fuzzy 

sets: A comprehensive study. Soft Computing, 

24, 3459–3478. 

[21] Saini, R., Sharma, P., & Chauhan, N. 

(2025). A generalization of similarity measure 

in collection of intuitionistic fuzzy sets. 

European Journal of Pure and Applied 

Mathematics, 17(1). 

[22] Sharma, P., Saini, R., & Chauhan, N. 

(2023). Some properties of operations in the 

collection of intuitionistic fuzzy sets: A novel 

approach. European Journal of Pure and 

Applied Mathematics, 16(2), 4939. 

[23] Smarandache, F. (2005). Neutrosophic set 

– A generalization of the intuitionistic fuzzy 

set. International Journal of Pure and Applied 

Mathematics, 24(3), 287–297. 

[24] Szmidt, E., & Kacprzyk, J. (2000). 

Distances between intuitionistic fuzzy sets. 

Fuzzy Sets and Systems, 114(3), 505–518. 

[25] Tripathy, B. K., Khandelwal, S., & 

Satapathy, M. K. (2015). A bag theoretic 

approach towards the count of an intuitionistic 

fuzzy set. International Journal of Intelligent 

Systems and Applications, 7(5), 16–23. 

https://doi.org/10.5815/ijisa.2015.05.03 

[26] Wu, W.-Z., & Xu, W.-H. (2016). 

Similarity measures and clustering for 

hierarchical information systems. Information 

Sciences, 329, 140–158. 

[27] Xu, Z. (2007). Intuitionistic fuzzy 

aggregation operators. IEEE Transactions on 

Fuzzy Systems, 15(6), 1179–1187. 

[28] Xu, Z. S., & Chen, J. (2008). An overview 

of distance and similarity measures of 

intuitionistic fuzzy sets. International Journal 

of Uncertainty, Fuzziness and Knowledge-

Based Systems, 16(4), 529–555. 

[29] Xu, Z., & Chen, J. (2021). New distance 

and similarity measures for intuitionistic fuzzy 

sets. Information Sciences, 560, 363–380. 

[30] Xu, Z., & Yager, R. R. (2006). Some 

geometric aggregation operators based on 

intuitionistic fuzzy sets. International Journal 

of General Systems, 35(6), 645–660. 

[31] Yunianti, D. N., Hidayat, N., Sulaiman, 

R., & Alghofari, A. R. (2023). Some properties 

of operations in the collection of intuitionistic 

fuzzy sets: A novel approach. European 

Journal of Pure and Applied Mathematics, 

16(4), 2198–2207. 

[32] Yunianti, D. N., Hidayat, N., Sulaiman, 

R., & Alghofari, A. R. (2024/2025). Similarity 

measure on collection of intuitionistic fuzzy 

sets. AIP Conf. Proc. / EJPAM. (Volumul final 

urmează.) 

[33] Yunianti, H. (2023). Similarity measures 

for intuitionistic fuzzy sets: A survey and new 

proposals. Journal of Intelligent & Fuzzy 

Systems, 45(2), 2345–2362. 

[34] Zadeh, L. A. (1965). Fuzzy sets. 

Information and Control, 8(3), 338–353. 

[35] Zhang, Q., & Jiang, Y. (2019). Similarity 

measures on hierarchical models: A survey. 

Applied Soft Computing, 83, 105640. 

[21] OpenAI. (2025). ChatGPT (GPT-5): 

Academic writing and linguistic assistance 

model. OpenAI. Available online: 

https://chat.openai.com

 

https://chat.openai.com/

