Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 301 -- 325

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

EXISTENCE RESULTS FOR A FUNCTIONAL INTEGRO-DIFFERENTIAL INCLUSIONS WITH RIEMANN-STIELTJES INTEGRAL OR INFINITE-POINT BOUNDARY CONDITIONS

A. M. A. El-Sayed, Sh. M Al-Issa and M. H. Hijazi

Abstract. In this article, we establish the existence of solutions for initial value problem of fractional-order differential inclusion with nonlocal infinite-point or Riemann–Stieltjes integral boundary conditions. The continuous dependence of the solution on the set of selections and some other functions will be proved.

2020 Mathematics Subject Classification: 34A127; 4H10; 45G10
Keywords: Functional integro-differential inclusion; fixed point theorem; Riemann–Stieltjes integral boundary conditions; infinite-point boundary conditions

Full text

References

  1. J. P. Aubin, A. Cellina, Differential Inclusion, Springer-Verlag, (1984).

  2. Sh. M Al-Issa, A. M. A. El-Sayed, Positive integrable solutions for nonlinear integral and differential inclusions of fractional-orders, Commentat. Math. 49(2) (2009), 171-177. MR2591182. Zbl 1228.26010.

  3. Sh. M Al-Issa, N. M. Mawed, Results on solvability of nonlinear quadratic integral equations of fractional orders in Banach algebra, Journal of Nonlinear Sciences and Applications, 14(4) (2021), 181--195. MR4194880.

  4. M. Caputo, Linear models of dissipation whose Q is almost frequency independent II, Geophys.~J.~R.~Astr.~Soc., 13(5) (1967), 529--539. MR2379269. Zbl 1210.65130.

  5. R. F. Curtain, A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic press, 132 (1977). MR0479787. Zbl 0448.46002.

  6. A. Cellina, S. Solimini, Continuous extension of selection, Bull. Polish Acad. Sci. Math., 35 (9) (1978).

  7. K. Deimling, Nonlinear functional Analysis, Springer-Verlag, (1985).

  8. A. M. A. El-sayed, A. G. Ibrahim, Multivalued fractional differential equations, Applied Mathematics and Computation, 68 (1995), 15-25.

  9. A. M. A. El-sayed, A. G. Ibrahim, Set-valued integral equations of fractional-orders, Applied mathematics and computation, 118 (2001), 113-121. MR1805164. Zbl 1024.45003.

  10. A. M. A. El-Sayed, Sh. M Al-Issa, Monotonic continuous solution for a mixed type integral inclusion of fractional order, J. Math. Appl., 33 (2010), 27-34. MR2829664. Zbl 1382.45007.

  11. A. M. A. El-Sayed, Sh. M Al-Issa, Global Integrable Solution for a Nonlinear Functional Integral Inclusion, SRX Mathematics, 2010 (2010).

  12. A. M. A. El-Sayed, Sh. M Al-Issa, Monotonic integrable solution for a mixed type integral and differential inclusion of fractional orders, Int. J. Differ. Equations Appl., 18(1) (2019), 1--9.

  13. A. M. A. El-Sayed, Sh. M Al-Issa, Monotonic solutions for a quadratic integral equation of fractional order, AIMS Mathematics, 4(3) (2019), 821--830. MR4136132.

  14. K. Kuratowski, C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13(6) (1965), 397–403. MR188994. Zbl 0152.21403.

  15. A.N. Kolomogorov, S.V. Fomin, Introductory Real Analysis. Dover Publications Inc, New York, (1975). MR0377445. Zbl 0152.21403.

  16. V. Lakshmikantham, S. Leela, Differential and Integral Inequalities, Academic press, New York-London, 1 (1969).

  17. K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiely and Sons Inc. (1993). MR1219954 Zbl 0789.26002

  18. I. Podlubny, A. M. A. EL-Sayed, On two definitions of fractional calculus, Preprint UEF 03-69 (ISBN 80-7099-252-2), Solvak Academy of science-Institute of Experimental phys., (1996).

  19. I. Podlubny, Fractional Differential Equation, Acad. Press, San Diego-New York-london, (1999).

  20. S. G. Samko, A. A. Kilbas and O. Marichev, Integrals and derivatives of fractional order and some of their applications. Nauka i Teknika, Minsk. (1987). MR915556.



A. M. A. EL-Sayed
Department of Mathematics, Alexandria University, Alexandria, Egypt.
e-mail: amasayed@alexu.edu.eg

Sh. M Al-Issa
Department of Mathematics, Lebanese International University, Beirut, Lebanon,
Department of Mathematics, International University of Beirut, Saida, Lebanon.
e-mail: Shorouk.alissa@liu.edu.lb

M. H. Hijazi
Department of Mathematics, Lebanese International University, Beirut, Lebanon.
e-mail: 31330579@students.liu.edu.lb




http://www.utgjiu.ro/math/sma