Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 27 -- 48

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

DOUBLE CALCULUS

Patrik Lundström

Abstract. We present a streamlined, slightly modified version, in the two-variable situation, of a beautiful, but not so well known, theory by Bögel [1, 2], already from the 1930s, on an alternative higher dimensional calculus of real functions, a double calculus, which includes many two-variable extensions of classical results from single variable calculus, such as Rolle's theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Fermat's extremum theorem, the first derivative test, and the first and second fundamental theorems of calculus.

2020 Mathematics Subject Classification: 26A24, 26A42,26B15
Keywords: continuous function; differentiable function; Riemann integral; the fundamental theorem of calculus

Full text

References

  1. K. Bögel, Mehrdimensionale Differentiation von Funktionen mehrerer Veranderlicher, J. Reine Angew. Math. 170(1934), 197-217. MR1581409. Zbl 0008.25005.

  2. K. Bögel, Über mehrdimensionale Differentiation, Integration und beschrankte Variation, J. Reine Angew. Math., 173(1935), 5-29. MR1581453. Zbl 0011.05903.

  3. R. Courant, Differential and Integral Calculus. Volume II, Interscience Pulishers Inc., New York, 1950. MR1009559. Zbl 0635.26002.

  4. E. Dobrescu and I. Siclovan. Considerations on functions of two variables. Analele Universitatii Timisoara Seria Stiinte Matematica-Fizica. 3(1965), 109–121. MR0206176. Zbl 0166.31502.

  5. J. V. Grabiner, The Origins of Cauchy’s Rigorous Calculus. M.I.T. Press, Cambridge, MA, 1981. MR0612973. Zbl 0517.01002.

  6. L. Olsen, A New Proof of Darboux's Theorem, Amer. Math. Monthly, 111:8(2004), 713-715. MR2091547. Zbl 1187.26004.

  7. J. Plante, A Proof of Bonnet's Version of the Mean Value Theorem by Methods of Cauchy, Amer. Math. Monthly, 124:3(2017), 269-273. MR3626249. Zbl 1391.26018.

  8. W. Rudin. Principles of mathematical analysis, 1976. MR0385023. Zbl 0148.02903.

  9. J. Schwartz, The Formula for Change in Variables in a Multiple Integral, Amer. Math. Monthly, 61:2(1954), 81-85. MR0060004. Zbl 0055.05301.

  10. D. H. Trahan, The Mixed Partial Derivatives and the Double Derivative, Amer. Math. Monthly, 76:1(1969), 76-77. MR1535244. Zbl 0175.05401.



Patrik Lundström
Department of Engineering Science, University West,
SE-46186 Trollhättan, Sweden.
e-mail: patrik.lundstrom@hv.se

http://www.utgjiu.ro/math/sma