Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 59 -- 72

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

MULTIVALUED MIZOGUCHI-TAKAHASHI TYPE RATIONAL CONTRACTION IN RELATIONAL METRIC SPACES

Binayak S. Choudhury, Nikhilesh Metiya, Priyam Chakraborty and Sunirmal Kundu

Abstract. In this paper we establish a result in the fixed point theory of multivalued mappings. This is done by combining three prevalent trends in fixed point theory. Some consequences of the main theorem are discussed. We also provide an illustrative example. The results are derived on metric spaces with a relation.

2020 Mathematics Subject Classification: 54H25
Keywords: MT-function, binary relation, multivalued function, fixed point, rational contraction

Full text

References

  1. Alam, A., Imdad, M.: Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 17, 693--702 (2015). MR3421979. Zbl 1335.54040.

  2. Alam, A., Imdad, M.: Relation-theoretic metrical coincidence theorems. Filomat 31(14), 4421--4439(2017). MR3730367. Zbl 1477.54037.

  3. Alam, A., Imdad, M.: Nonlinear contractions in metric spaces under locally T-transitive binary relations. Fixed Point Theory 19(1), 13--24 (2018). MR3753984. Zbl 1460.54028.

  4. Banach, S.: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund Math. 3, 133--181 (1922). MR3949898. JFM 48.0201.01.

  5. Boyd, D. W., Wong, T. S. W.: On nonlinear contractions. Proc. Amer. Math. Soc. 20(2), 458--464 (1969). MR239559. Zbl 0175.44903.

  6. Chakraborty, P., Choudhury, B. S., De la Sen, M.: Relation-theoretic fixed point theorems for generalized weakly contractive mappings. Symmetry 12(1),29 (2020).

  7. Chatterjea, S. K.: Fixed-point theorems. C.R. Acad. Bulgare Sci. 25, 727--730(1972). MR324493. Zbl 0274.54033.

  8. Dass, B. K., Gupta, S.: An extension of Banach contraction principle through rational expressions. Indian J. Pure Appl. Math. 6, 1455--1458 (1975). MR467708. Zbl 0371.54074.

  9. Du, W. S.: Some new results and generalizations in metric fixed point theory. Nonlinear Anal. 73, 1439--1446 (2010). MR2661238. Zbl 1190.54030.

  10. Du, W. S.: Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi-Takahashi's condition in quasi ordered metric spaces. Fixed Point Theory Appl. (2010), Article ID 876372. MR2645105. Zbl 1194.54061.

  11. Du, W. S.: On coincidence point and fixed point theorems for nonlinear multivalued maps. Topoloy and its Applications 159, 49--56 (2012). MR2852948. Zbl 1231.54021.

  12. Górniewicz, L.: Topological fixed point theory of multivalued mappings. Springer Netherlands, 1999. MR2238622. Zbl 1107.55001.

  13. Harjani, J., López, B., Sadarangani, K.: A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space. Abstr. Appl. Anal. 2010 (2010), Article ID: 190701. MR2726609. Zbl 1203.54041.

  14. Hasanuzzaman, M., Imdad, M.: Relation theoretic metrical fixed point results for Suzuki type Z-contraction with an application. AIMS Mathematics 5(3), 2071--2087 (2020). MR4143191. Zbl 1484.54040.

  15. Hasanuzzaman, M., Sessa, S., Imdad, M., Alfaqih, W. M. : Fixed point results for a selected class of multi-valued mappings under (θ, ℛ)-contractions with an application. Mathematics 8, 695 (2020).

  16. Hasanuzzaman, M., Imdad, M., Saleh, H. N. : On modified ℒ-contraction via binary relation with an application. Fixed Point Theory 23 (1), 267--278 (2022). MR4370350. Zbl 07606927.

  17. Hasanuzzaman, M., Imdad, M.: Some fixed point results via \mathcalLD-contraction and relational contraction in JS-metric spaces. U.P.B. Sci. Bull., Series A 84 (1), 13--24 (2022).

  18. Hasanuzzaman, M., Imdad, M.: A unified Feng-Liu type result in relational metric spaces with an application. J. Fixed Point Theory Appl. 25: 30 (2023), 13 pages. MR4523294. Zbl 07635908.

  19. Imdad, M., Hasanuzzaman, M., Alfaqih, W. M. : Relation-theoretic fixed point results for set-valued mappings via simulation functions with an application. Filomat 36:6, 1943--1954 (2022). MR4518370.

  20. Jaggi, D. S., Dass, B. K. : An extension of Banach's fixed point theorem through rational expression. Bull. Cal. Math. Soc. 72, 261--262 (1980). MR669594. Zbl 0476.54044.

  21. Kannan, R.: Some results on fixed points. Bull. Cal. Math. Soc. 60, 71--76 (1968). MR257837. Zbl 0209.27104.

  22. Ben-El-Mechaiekh, H.: Some fundamental topological fixed point theorems for set-valued maps. Chapter 7, Topics in Fixed Point Theory, Springer International Publishing Switzerland (2014). MR3203913. Zbl 1329.54002.

  23. Mizoguchi, N., Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141, 177--188 (1989). MR1004592. Zbl 0688.54028.

  24. Nadler Jr., S. B.: Multivalued contraction mappings. Pacific J. Math. 30(2), 475--488 (1969). MR254828. Zbl 0187.45002.

  25. Rakotch, E.: A note on contractive mappings. Proc. Amer. Math. Soc. 13, 459--465(1962). MR148046. Zbl 0105.35202.

  26. Rus, I. A., Petruşel, A., Sîntămărian, A.: Data dependence of the fixed points set of multivalued weakly picard operators. Studia Univ. ``Babeş - Bolyai", Mathematica XLVI (2), 111--121 (2001). MR1954261. Zbl 1027.47053.

  27. Samet, B., Turinici, M.: Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications. Commun. Math. Anal. 13(2), 82--97 (2012). MR2998356. Zbl 1259.54024.

  28. Shukla, S., Rodríguez-López, R.: Fixed points of multi-valued relation-theoretic contractions in metric spaces and application. Quaest. Math. 43(3), 409-424 (2020). MR4080405. Zbl 1436.54041.

  29. Sultana, A., Qin, X.: On the equivalence of the Mizoguchi-Takahashi locally contractive map and the Nadler's locally contractive map. Numer. Funct. Anal. Optim. 40(16),1964–-1971 (2019). MR4017750. Zbl 1425.54032.

  30. Suzuki, T.: Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's. J. Math. Anal. Appl. 340(1), 752--755 (2008). MR2376195. Zbl 1137.54026.

  31. Turinici, M. : Product fixed points in ordered metric spaces. arXiv:1110.3079v1, 2011.

  32. Yuan, G. X. Z.: Fixed point and related theorems for set-valued mappings, Chapter 19, Handbook of Metric Fixed Point Theory, Springer Netherlands 643--690 (2001). MR1904290. Zbl 1019.47043.




Binayak S. Choudhury
Department of Mathematics,
Indian Institute of Engineering Science and Technology, Shibpur,
Howrah-711103, West Bengal, India.
E-mail: binayak@math.iiests.ac.in

Nikhilesh Metiya
Department of Mathematics,
Sovarani Memorial College, Jagatballavpur,
Howrah - 711408, West Bengal, India.
E-mail: metiya.nikhilesh@gmail.com

Priyam Chakraborty - Corresponding Author
Department of Mathematics,
Indian Institute of Engineering Science and Technology, Shibpur,
Howrah - 711103, West Bengal, India.
E-mail: priyam.math123@gmail.com

Sunirmal Kundu
Department of Mathematics,
Government General Degree College, Salboni,
Paschim Medinipur - 721516, West Bengal, India.
E-mail: sunirmalkundu2009@rediffmail.com





http://www.utgjiu.ro/math/sma