Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 83 -- 95
This work is licensed under a Creative Commons Attribution 4.0 International License.CONFORMABLE FUNCTIONAL EVOLUTION EQUATIONS WITH NONLOCAL CONDITIONS IN BANACH SPACES
Abderrahmane Boukenkoul and Mohamed Ziane
Abstract. In this paper, we study semilinear conformable fractional evolution equations with finite delay subjected to nonlocal initial conditions in an arbitrary Banach space. We prove the existence of mild solutions under compactness type conditions on the nonlinear forcing term. Our result improves and complements several earlier related works. We apply our result to study a functional conformable partial differential equation of transport type.
2020 Mathematics Subject Classification: 26A33; 34A08; 47H08.
Keywords: conformable fractional derivative; mild solutions; measure of noncompactness.
References
S. Abbas, M. Benchohra, Advanced Functional Evolution Equations and Inclusions, Developments in Mathematics, vol. 39. Springer, (2015). MR3381102. Zbl 1390.34002.
T. Abdeljawad; On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. MR3293309. Zbl 1304.26004.
T. Abdeljawad, Q. M. Al-Mdallal, F. Jarad; Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos Solitons Frac., 119 (2019), 94-101. MR3894310. Zbl 1448.34006.
C. T. Anh, , T. D. Ke, On nonlocal problems for retarded fractional differential equations in Banach spaces Fixed Point Theory 15(2), 373-392 (2014). MR3235658. Zbl1307.34120 .
S. Al-Sharif, M. Al Horani, R. Khalil, The Hille-Yosida theorem for conformable fractional semi-groups of operators. Missouri J. Math. Sci. 33(1):18–26 (2021). MR4278773. Zbl 1471.47027.
J. Banas and K. Goebel, Measure of Noncompactness in Banach Spaces, Lectures Notes in Pure and Applied Mathematics, 50, Marcel Dekker, New York, 1980. MR591679. Zbl 0441.47057.
M. Bouaouid, K. Hilal, S. Melliani, Existence of mild solutions for conformable fractional differential equations with nonlocal conditions. Rocky Mountain J. Math., 50(3), 871-879, (2020). MR4132616. Zbl 1479.34009.
M. Burlica, M. Necula, D. Rosu, I. Vrabie, Delay Differential Evolutions Subject to Nonlocal Initial Conditions CRC Press Taylor & Francis group, New York, 2016. MR3618778. Zbl 1348.34001.
L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494-505 (1991). MR1137634. Zbl 0748.34040.
L. Byszewski, V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40(1991), 11-19. MR1121321. Zbl 0694.34001.
Y. Cenesiz, A. Kurt, E. Nane, Stochastic solutions of conformable fractional Cauchy problems, Stat. Probab. Lett. 124. (2017) 126–13. MR3608222. Zbl 1417.35218.
W. Chung, Fractional newton mechanics with conformable fractional derivative J. Comput. Appl. Math., 290 (2015), 150-158. MR3370399. Zbl 1336.70033.
K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl. 179:2 (1993), 630–637. MR1249842. Zbl 0798.35076.
K. Ezzinbi, M. Ziat, Nonlocal Integro-Differential Equations Without the Assumption of Equicontinuity on the Resolvent Operator in Banach Spaces. Differ Equ Dyn Syst 30, 315–333 (2022). MR4402120. Zbl 1486.35406.
L. Guedda, A. Hallouz, An existence result for neutral functional differential inclusions in a Banach space. Electron. J. Qual. Theory Differ. Equ.. No. 9, 1-23, (2008). MR2385413. Zbl 1183.34104.
J. K. Hale, S. Verduyn Lunel, Introduction to Functional-Differential Equations, Appl. Math. Sci., 99, Springer-Verlag, New York, 1993. MR1243878. Zbl 0787.34002.
A. Jaiswal, D. Bahuguna, Semilinear Conformable Fractional Differential Equations in Banach Spaces. Differ. Equ. Dyn. Syst. 27, 313–325 (2019). MR3916235. Zbl 1416.34002.
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter, Berlin, 2001. MR1831201. Zbl 0988.34001.
R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70. MR3164103. Zbl 1297.26013.
R. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York. 1976. MR0492671. Zbl 0333.47023.
H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nolinear Anal. 4, 985–999. (1980). MR0586861. Zbl 0462.34041.
J. Rosales-García, J. A. Andrade-Lucio, O. Shulika, Conformable derivative applied to experimental Newton's law of cooling, Rev. Mexicana de Fís., 66 (2020), 224-227. MR4086978.
I.I. Vrabie, C0-semigroups and applications, North-Holland Mathematics Studies 191, North- Holland Publishing Co., Amsterdam, 2003. MR1972224. Zbl 1119.47044.
J. Wu, Theory and Applications of Partial Functional Differential Equations. Springer, Berlin (1996). MR1415838. Zbl 0870.35116.
D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo 54:3 (2017), 903–917. MR3694729. Zbl 1375.26020.
H. Zhou, S. Yang, S. Zhang, Conformable derivative approach to anomalous diffusion. Phys. A. 2018, 491, 1001–1013. MR3721559. Zbl 07547549.
W. Zhong, L. Wang, Basic theory of initial value problems of conformable fractional differential equations. Adv. Difference Equ. 2018, 321:14. MR3853689. Zbl 1448.34033.
S.Yang, H. W. Zhou, T. T. Gao and L. P. Wang, Conformable Advection-Diffusion Equation for Radionuclide Migration in Porous Media, ISRM International Symposium-EUROCK 2020. International Society for Rock Mechanics and Rock Engineering, 2020.
Abderrahmane Boukenkoul
Département d'Agronomie, Faculté des sciences de la vie et de l'environnement,
Université Abou Bekr Belkaid, Tlemcen 13000, Algérie.
e-mail: boukenkoula@gmail.com
Mohamed Ziane
Department of Mathematics,
Ibn Khaldoun University, Tiaret. Algeria.
e-mail: mohamed.ziane@univ-tiaret.dz