Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 97 -- 105
This work is licensed under a Creative Commons Attribution 4.0 International License.AN APPLICATION OF THE PASCAL DISTRIBUTION SERIES FOR A CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS
B.A. Frasin
Abstract. In the present paper, we determine necessary and sufficient conditions for the subclass T(α, b) of analytic functions associated with Pascal distribution. Further, we consider properties of a special function related to Pascal distribution series. Several corollaries and consequences of the main results are also considered.
2020 Mathematics Subject Classification: 30C45
Keywords: Analytic functions; Hadamard product; Pascal distribution series
References
O. Altintaş, A subclass of analytic functions with negative coefficients, Hacet. Bull. Natur. Sci. Engrg., 19 (1990), 15-24. Zbl 0759.30006.
O. Altintaş and Y. Ertekin, A new subclass of analytic functions with negative coefficients, in Current Topics in Analytic Functions Theory (H. Srivatava and S. Owa, Editors), World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992, 36-47.Zbl 0987.30502.
R. M. El-Ashwah and W. Y Kota, Some condition on a Poisson distribution series to be in subclasses of univalent functions, Acta Universitatis Apulensis, No. 51 (2017), 89-103. MR3711116. Zbl 1413.30053.
Ş. Alt\i nkaya, S. Yalç\i n, Poisson distribution series for certain subclasses of starlike functions with negative coefficients, Annals of Oradea University Mathematics Fascicola 2, 24 (2) (2017), 5-8. MR3931277. Zbl 1399.30027.
S.Çakmak, S.Yalç\i n, and Ş. Alt\i nkaya, An application of the distribution series for certain analytic function classes, Surveys in Mathematics and its Applications, 15 (2020) 225-231. MR4066813. Zbl 1449.30013.
N. E. Cho, S. Y. Woo and S. Owa, Uniform convexity properties for hypergeometric functions, Fract. Cal. Appl. Anal., 5(3) (2002), 303--313. MR1922272. Zbl 1028.30013.
S. M. El-Deeb, T. Bulboacă and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59 (2019), 301--314. MR3987710. Zbl 1435.30045.
K.K. Dixit and S.K. Pal, On a class of univalent functions related to complex order, Indian J. Pure Appl. Math., 26 (1995), no. 9, 889-896. MR1347537. Zbl 0835.30006.
B.A. Frasin, On the real part of a class of analytic functions, Novi Sad J. Math. 41, No. 2 (2011), 63-72. Zbl 1265.30055.
B.A. Frasin, On certain subclasses of analytic functions associated with Poisson distribution series, Acta Univ. Sapientiae, Mathematica 11 1 (2019) 78--86. MR3995739. Zbl 1432.30010.
B.A. Frasin, Subclasses of analytic functions associated with Pascal distribution series, Adv. Theory Nonlinear Anal. Appl., 4 (2020) No. 2, 92--99.
B. A. Frasin and I. Aldawish, On subclasses of uniformly spirallike functions associated with generalized Bessel functions, J. Funct. Spaces, 2019, Article ID 1329462, 6 pages. MR3998948. Zbl 1431.30010.
B.A. Frasin and M. M. Gharaibeh, Subclass of analytic functions associated with Poisson distribution series, Afr. Mat. 31 (2020), 1167--1173. https://doi.org/10.1007/s13370-020-00788-z. MR4154545. Zbl 1463.30053.
B.A. Frasin and S.M. Aydogan, Pascal distribution series for subclasses of analytic functions associated with conic domains. Afr. Mat. 32 (2021), 105-113. DOI 10.1007/s13370-020-00813-1. MR4222458. Zbl07363570.
B.A. Frasin, T. Al-Hawary and F. Yousef, Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions, Afr. Mat. 30 (2019), 223--230. 10.1007/s13370-018-0638-5. MR3927324. Zbl 1438.30042.
A.W. Goodman, Univalent Functions, Vol. I, Mariner Publishing Co., Inc., Tampa, FL, 1983. MR0704183. Zbl 1041.30500.
E. Merkes and B. T. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc., 12 (1961), 885-888. MR143950. Zbl 0102.06502.
G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat. 28 (2017), 1357--1366. https://doi.org/10.1007/s13370-017-0520-x. Zbl 1381.30015.
G. Murugusundaramoorthy, K. Vijaya and S. Porwal, Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat. 45 (2016), no. 4, 1101-1107. MR3585439. Zbl 1359.30022.
W. Nazeer, Q. Mehmood, S.M. Kang, and A. Ul Haq, An application of Binomial distribution series on certain analytic functions, J. Comput. Anal. Appl., Volume 26, No.1 (2019), 11-17. MR3889613.
A. T. Oladipo, Bounds for Poisson and neutrosophic Poisson distributions associated with Chebyshev polynomials. Palest. J. Math.Journal 10, No. 1 (2021), 169-174. Zbl 1457.30005
S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., (2014), Art. ID 984135, 1--3. MR3173344. Zbl 1310.30017.
S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series. Afr. Mat. 27 (2016), 1021--1027. https://doi.org/10.1007/s13370-016-0398-z. MR3536083. Zbl 1352.30014.
H. Silverman, Starlike and convexity properties for hypergeometric functions,J. Math. Anal. Appl. 172 (1993), 574--581. MR1201006. Zbl 0774.30015.
H. M. Srivastava, G. Murugusundaramoorthy and S. Sivasubramanian, Hypergeometric functions in the parabolic starlike and uniformly convex domains, Integr. Transf. Spec. Func. 18 (2007), 511--520. MR2348596. Zbl 1198.30013.
B.A. Frasin
Al al-Bayt University, Faculty of Science, Department of Mathematics,
Mafraq, Jordan.
e-mail: bafrasin@yahoo.com