Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 163 -- 182
This work is licensed under a Creative Commons Attribution 4.0 International License.S-NOETHERIAN RINGS, MODULES AND THEIR GENERALIZATIONS
Tushar Singh, Ajim Uddin Ansari and Shiv Datt Kumar
Abstract. Let R be a commutative ring with identity, M an R-module and S ⊆ R a multiplicative set. Then M is called S-finite if there exist an s ∈ S and a finitely generated submodule N of M such that sM ⊆ N. Also, M is called S-Noetherian if each submodule of M is S-finite. A ring R is called S-Noetherian if it is S-Noetherian as an R-module. This paper surveys the most recent developments in describing the structural properties of S-Noetherian rings, S-Noetherian modules and their generalizations. Some interesting constructed examples of S-Noetherian rings and modules are also presented.
2020 Mathematics Subject Classification: 13E10, 13C13, 13A15
Keywords: S-Noetherian ring, S-Noetherian module, S-Noetherian property.
References
D. D. Anderson, T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30(9) (2002), 4407-4416. MR1936480. Zbl 1060.13007.
D. D. Anderson, D.J. Kwak, M. Zafrullah, Agreeable Domains, Comm. Algebra 23(13) (1995), 4861-4883. MR1356107. Zbl 0865.13005.
D. D. Anderson, D. F. Anderson, R. Markanda, The ring R(X) and R[X], J. Algebra 95 (1985), 96-115. MR797658. Zbl 0621.13008.
A. U. Ansari, B. K. Sharma, Graded S-Noetherian Modules, Int. Electron. J. Algebra 33 (2023), 87-108. MR4563790. Zbl 7660834.
M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company (1969). MR0242802. Zbl 0175.03601.
J. Baeck, G. Lee, J. W. Lim, S-Noetherian Rings and their Extensions, Taiwanese J. Math 20(6) (2016), 1231-1250. MR3580293. Zbl 1357.16039.
Z. Bilgin, M. L. Reyes, U. Tekir, On right S-Noetherian rings and S-Noetherian modules, Comm. Algebra 46(2) (2018), 863-869. MR3764903. Zbl 1410.16026.
G. Brookfield, Noetherian generalized power series rings, Comm. Algebra 32 (2004), 919-926. MR2063789. Zbl 1062.16049.
P. M. Eakin, The converse to a well known theorem on Noetherian rings, Mathematische Annalen 177(4) (1968), 278–282. MR0225767. Zbl 0155.07903.
R. Gilmeri, W. Heinzer, The Laskerian Properties Power Series Rings and Noetherian Spectra, Proc. Amer. Math. Soc. 79(1) (1980), 13-16. MR0560575. Zbl 0447.13009.
S. Goto, K. Yamagishi, Finite generation of Noetherian graded rings, Proc. Amer. Math. Soc. 89(1) (1983), 41-44. MR0706507. Zbl 0528.13015.
E. Hamann, E. Houston, J. L. Johnson, Properties of Upper Zero in R[x], Pacific J. Math. 135(1) (1988), 65-79. MR0965685. Zbl 0627.13007.
A. Hamed, S-Noetherian spectrum condition, Comm. Algebra 46(8) (2018), 3314-3321. MR3788995. Zbl 1395.13016.
A. Hamed, H. Sana, Modules satisfying the S-Noetherian property and S-ACCR, Comm. Algebra 44 (2016), 1941-1951. MR3490657. Zbl 1347.13005.
A. Hamed, H. Sana, S-Noetherian rings of the forms \mathscrA[X] and \mathscrA[[X]], Comm. Algebra 43 (2015), 3848-3856. MR3360852. Zbl 1329.13014.
A. Hamed, M. Achraf, S-prime ideals of a commutative ring, Beitr Algebra Geom. 61 (2020), 533-542. MR4127389. Zbl 1442.13010.
W. Heinzer, D. Lantz, The Laskerian Property in Commutative Rings, J. Algebra 72 (1981), 101-114. MR0634618. Zbl 0498.13001.
D. Hilbert, Ueber die Theorie der algebraischen Formen, Math. Ann. 36 (4) (1890), 473–534. MR1510634. Zbl 22.0133.01.
D. K. Kim, J.W. Lim, When Are Graded Rings Graded S-Noetherian Rings, Mathematics 8(9) (2020), 1532. https://doi.org/10.3390/math8091532
D. K. Kim, J.W. Lim, The Cohen type theorem and the Eakin-Nagata type theorem for S-Noetherian rings revisited, Rocky Mountain J. Math. 50(2) (2020), 619-630. MR4104398. Zbl 1440.13016.
M. J. Kwon, J.W. Lim, On nonnil-S-Noetherian rings, Mathematics 8(9) (2020), 1428. https://doi.org/10.3390/math8091428
J. W. Lim, D.Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra 218(6) (2014), 1075-1080. MR3153613. Zbl 1282.13009.
J. W. Lim, D.Y. Oh, S-Noetherian properties of composite ring extensions, Commun. Algebra 43 (2015), 2820–2829. MR3354063. Zbl 1329.13001.
J. W. Lim, A Note on S-Noetherian Domains, Kyungpook Math. J. 55(3) (2015), 507-514. MR3414628. Zbl 1329.13006.
Z. Liu, On S-Noetherian rings, Arch. Math.(Brno) 43(1) (2007), 55-60. MR2310124. Zbl 1160.16307.
Z. Liu, Endomorphism rings of modules of generalized inverse polynomials, Comm. Algebra 28(2) (2000), 803-814. MR1736764. Zbl 0949.16026.
C. P. Lu, Modules satisfying ACC on a certain types of colons, Pacific J. Math. 131 (2) (1988), 303-318. MR0922221. Zbl 0664.13005.
M. Nagata, A type of subrings of a noetherian ring, J. Math. Kyoto Univ. 8(3) (1968), 465–467. MR0236162. Zbl 0184.06701.
M. Nagata, On Eakin-Nagata-Formanek theorem, J. Math. Kyoto Univ. (JMKYAZ) 33(3) (1993), 827–828. MR1239095. Zbl 0797.13011.
E. Noether, Idealtheorie in Ringbereichen, Math. Ann. 83 (1921), 24-66. MR1511996. Zbl 48.0121.03.
J. Ohm, R. Pendleton, Rings with Noetherian spectrum, Duke Math. J. 35(3) (1968), 631-639. MR229627. Zbl 0172.32201.
P. Ribenboim, Noetherian rings of generalized power series, J. Pure appl. Algebra 79 (1992), 293-312. MR1167578. Zbl 0761.13007.
P. Ribenboim, La condition des chaines ascendantes pour les ideaux radicaux, C. R. Math. Rep. Acad. Sci. Canada 6(4) (1985), 277-280. MR0802328. Zbl 0599.13015.
Tushar Singh
Department of Mathematics,
Motilal Nehru National Institute of Technology Allahabad,
Prayagraj(UP)- 211004, India.
e-mails: tushar.2021rma11@mnnit.ac.in, sjstusharsingh0019@gmail.com
Ajim Uddin Ansari
Department of Mathematics,
CMP Degree College, University of Allahabad
Prayagraj (UP)-211002, India.
e-mail: ajimmatau@gmail.com
Shiv Datt Kumar (corresponding author)
Department of Mathematics,
Motilal Nehru National Institute of Technology Allahabad,
Prayagraj(UP)- 211004, India.
e-mail: sdt@mnnit.ac.in