Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 183 -- 221

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

SOME ONE AND TWO PARAMETER ESTIMATORS FOR THE MULTICOLLINEAR GAUSSIAN LINEAR REGRESSION MODEL: SIMULATIONS AND APPLICATIONS

Md Ariful Hoque and B. M. Golam Kibria

Abstract. The ordinary least square estimator is inefficient when there exists multicollinearity among regressors in linear regression model. There are many methods available in literature to solve the multicollinearity problem. In this study, we consider some one and two parameter estimators for estimating the regression parameters. We theoretically compared the estimators in terms of smaller mean squared error (MSE) criteria. A Monte Carlo simulation study has been conducted to compare the performance of the estimators numerically. Finally, for illustration purposes, a real-life data is analyzed.

2020 Mathematics Subject Classification: 62J07; 62F10.
Keywords: D estimator; Linear Regression Model; MSE; Multicollinearity; Ridge Regression estimator; James-Stein Estimator; Liu estimator; Modified Liu estimator; Simulation Study.

Full text

References

  1. Alheety, M. and Kibria, B. M. G. Modified Liu-type estimator based on (r- k) class estimator. Communications in Statistics-Theory and Methods 42 (2) (2013), 304-319. MR3004637 Zbl 1298.62112

  2. Akram, M. N., Amin, M., and Amanullah, M. James Stein estimator for the inverse Gaussian regression model. Iranian Journal of Science and Technology, Transactions A: Science, 45(4) (2021), 1389-1403. MR4279436

  3. Amin, M., Akram, M. N., and Amanullah, M. On the James-Stein estimator for the Poisson regression model. Communications in Statistics-Simulation and Computation, (2020) 1-13. MR4496145 Zbl 07603832

  4. Batah, F. S. M., Ramanathan, T. V., and Gore, S. D. The efficiency of modified jackknife and ridge type regression estimators: a comparison. Surveys in Mathematics and its Applications, 3 (2008), 111-122. MR2438671. Zbl 1196.62098.

  5. Dawoud, I., and Kibria, B. M. G. A new biased estimator to combat the multicollinearity of the Gaussian linear regression model. Stats, 3(4) (2020), 526-541.

  6. Dorugade, A. V. (2014). A modified two-parameter estimator in linear regression. Statistics in Transition. New Series, 15(1), 23-36.

  7. Ehsanes Saleh, A. K. Md., and Golam Kibria, B. M. G. Performance of some new preliminary test ridge regression estimators and their properties. Communications in Statistics-Theory and Methods, 22(10) (1993), 2747-2764. MR1242866. Zbl 0786.62071.

  8. Farebrother, R. W. Further results on the mean square error of ridge regression. Journal of the Royal Statistical Society. Series B 38(Methodological) (1976), 248-250. MR0653156. Zbl 0344.62056.

  9. Firinguetti, L. L. A simulation study of ridge regression estimators with autocorrelated errors. Communications in Statistics-simulation and computation, 18(2) (1989), 673-702. MR1016233 Zbl 0695.62176

  10. Gibbons, D. G. A simulation study of some ridge estimators. Journal of the American Statistical Association, 76(373) (1981), 131-139. Zbl 0452.62055.

  11. Hocking, R. R., Speed, F. M., and Lynn, M. J. A class of biased estimators in linear regression. Technometrics, 18(4) (1976), 425-437. MR0428622. Zbl 0346.62046.

  12. Hoerl, A. E., and Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1) (1970), 55-67. Zbl 0202.17205.

  13. Hubert, M. H., and Wijekoon, P. Improvement of the Liu estimator in linear regression model. Statistical Papers, 47(3) (2006), 471-479. MR2276209 Zbl 1125.62055

  14. JF, L., and P.W. A simulation study of ridge and other regression estimators. Communications in Statistics-theory and Methods, 5(4) (1976), 307-323. Zbl 0336.62056.

  15. Kaçiranlar, S., Sakallioğlu, S., Akdeniz, F., Styan, G. P., and Werner, H. J. A new biased estimator in linear regression and a detailed analysis of the widely-analysed dataset on Portland cement. Sankhyā: The Indian Journal of Statistics, Series B (1999), 443-459.

  16. Kejian, L. A new class of biased estimate in linear regression. Communications in Statistics-Theory and Methods, 22(2) (1993), 393-402. MR1212418. Zbl 0784.62065.

  17. Khalaf, G., and Shukur, G. Choosing ridge parameter for regression problems. Commun. Stat., Theory Methods 34(5) (2005), 1177-1182. MR2189425. Zbl 1073.62057.

  18. Kibria, B. M. G. Performance of some new ridge regression estimators. Communications in Statistics-Simulation and Computation, 32(2) (2003), 419-435. MR1983342. Zbl 1075.62588.

  19. Kibria, B. M. G. More than hundred (100) estimators for estimating the shrinkage parameter in a linear and generalized linear ridge regression models. Journal of Econometrics and Statistics. 2(2) (2022), 233-252.

  20. Kibria, B. M. G and Banik, S. Some Ridge Regression Estimators and Their Performances. Journal of Modern Applied Statistical Methods. 15 (1) (2016), 206-238.

  21. Kibria, B. M. G., and Lukman, A. F. A new ridge-type estimator for the linear regression model: Simulations and applications. Scientifica, 2020.

  22. Kibria, B. M. G., Månsson, K., and Shukur, G. Performance of some logistic ridge regression estimators. Computational Economics, 40 (2012), 401-414.

  23. Lukman, A. F., Ayinde, K., Binuomote, S., and Clement, O. A. Modified ridge‐type estimator to combat multicollinearity: Application to chemical data. Journal of Chemometrics, 33(5) (2019), e3125.

  24. Lukman, A. F., Kibria, B. M. G., Ayinde, K., and Jegede, S. L. Modified one-parameter liu estimator for the linear regression model. Modeling and Simulation in Engineering, 2020.

  25. Månsson, K., Kibria, B. M. G., Sjölander, P., and Shukur, G. Improved Liu estimators for the Poisson regression model. International Journal of Statistics and Probability, 1(1) (2012), 2.

  26. Mansson, K., Shukur, G. and Kibria, B. M. G. On some ridge regression estimators: A Monte Carlo simulation study under different error variances. Journal of Statistics 17 (1) (2010), 1-22.

  27. Mansson, K., Kibria, B. M. G. and Shukur, G. Some Liu Type Estimators for the dynamic OLS estimator: With an application to the carbon dioxide Kuznets curve for Turkey. Communications in Statistics: Case Studies, Data Analysis and Applications 3(3-4) (2017), 55-61.

  28. McDonald, G. C., and Galarneau, D. I. A Monte Carlo evaluation of some ridge-type estimators. Journal of the American Statistical Association, 70(350) (1975), 407-416. Zbl 0319.62049.

  29. Muniz, G., and Kibria, B. M. G. On some ridge regression estimators: An empirical comparison. Communications in Statistics—Simulation and Computation®, 38(3) (2009), 621-630. MR2649568. Zbl 1160.62337.

  30. Nomura, M. On the almost unbiased ridge regression estimator. Communications in Statistics-Simulation and Computation, 17(3) (1988), 729-743. MR0964119. Zbl 0695.62174.

  31. Owolabi, A. T., Ayinde, K., Idowu, J. I., Oladapo, O. J., and Lukman, A. F. A New Two-Parameter Estimator in the Linear Regression Model with Correlated Regressors, J. Stat. Appl. Pro. 11 (2) (2022), 499-512.

  32. Stein, C. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics (Vol. 3, pp. 197-207). University of California Press, 1956. MR0084922. Zbl 0073.35602.

  33. Swindel, B. F. Good ridge estimators based on prior information. Communications in Statistics-Theory and Methods, 5(11) (1976), 1065-1075. MR0440806. Zbl 0342.62035.

  34. Trenkler, G., and Toutenburg, H. Mean squared error matrix comparisons between biased estimators—An overview of recent results. Statistical papers, 31(1) (1990), 165-179. MR1124154. Zbl 0342.62035.

  35. Woods, H., Steinour, H. H., and Starke, H. R. Effect of composition of Portland cement on heat evolved during hardening. Industrial and Engineering Chemistry, 24(11) (1932), 1207-1214.

  36. Wu, J. and Asar, Y. A two-parameter estimator in linear measurement error model. Statistics, 56(4) (2022), 739-754. MR4466033. Zbl 1493.62211.

  37. Yang, H., and Chang, X. A new two-parameter estimator in linear regression. Communications in Statistics—Theory and Methods, 39(6) (2010), 923-934. MR2745351. Zbl 1493.62211.




Md Ariful Hoque
Department of Mathematics and Statistics,
Florida International University, Miami, Florida, USA.
e-mail: mhoqu010@fiu.edu

B. M. Golam Kibria
Department of Mathematics and Statistics,
Florida International University, Miami, Florida, USA.
e-mail: kibriag@fiu.edu

http://www.utgjiu.ro/math/sma