Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 223 -- 257
This work is licensed under a Creative Commons Attribution 4.0 International License.A COMPREHENSIVE REVIEW OF THE HERMITE-HADAMARD INEQUALITY PERTAINING TO FRACTIONAL DIFFERENTIAL OPERATORS
Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh and Jessada Tariboon
Abstract. A review on Hermite-Hadamard type inequalities connected with a different classes of convexities and fractional differential operators is presented. In the various classes of convexities it includes, classical convex functions, quasi-convex functions, p-convex functions, strongly-m-convex functions, strongly-(θ,m)-convex functions, (s, m)-convex functions, (θ, h- m)-convex functions, strongly (θ, h- m)-convex functions, (h, m)-convex functions of the second type, m-convex functions, h-convex functions, (h,m)-convex functions, relative-convex functions, exponentially (θ, h- m)-convex functions, harmonically h-convex functions and geometric-arithmetically s-convex functions. In the fractional differential operators it includes, Caputo fractional derivative, k-Caputo fractional derivative and Hilfer fractional derivative.
2020 Mathematics Subject Classification: 26A51; 26A33; 26D07; 26D10; 26D15
Keywords: Hermite-Hadamard inequalities; convex function; Caputo fractional derivative; k-Caputo fractional derivative; Hilfer fractional derivative
References
Srivastava, H.M.; Mehrez, S.; Sitnik, S.M. Hermite-Hadamard-type integral inequalities for convex functions and their applications. Mathematics 2022, 10, 3127.
Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Nonlaopon, K.; Hamed, Y. S. Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 7(3) (2021), 4338-4358.
Srivastava, H.M.; Sahoo, S.K.; P. O. Mohammed, P. O.; Baleanu, D.; Kodamasingh, B. Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators. Internat. J. Comput. Intel. Syst. 15 (2022), Article ID 8, 1-12.
Srivastava, H.M. ; Zhang, Z-H.; Wu, Y-D. Some further refinements and extensions of the Hermite–Hadamard and Jensen inequalities in several variables. Math. Comput. Modeling 54 (2011) 2709-2717. Zbl 1235.26016.
Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82.
Hadamard, J. Etude sur les propriétés des fonctions entiéres et en particulier d'une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 9, 171--216.
Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11 (5) (1998) 91-95. MR1638774. Zbl 0938.26012.
Tariq, M., Ntouyas, S.K., Shaikh, A.A A comprehensive review of the Hermite–Hadamard inequality pertaining to fractional integral operators. Mathematics 2023, 11, 1953.
Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006. MR2218073. Zbl 1092.45003.
Farid, G.; Javed, A.; Naqvi, S. Hadamard and Fejér-Hadamard inequalities and related results via Caputo fractional derivatives. Bull. Math. Anal. Appl. 9 (2017), 16-30. MR3713348. Zbl 1408.26021.
Kang, S.M.; Farid, G.; Nazeer, W.; Naqvi, S. A version of the Hadamard inequality for Caputo fractional derivatives and related results. J. Comput. Anal. Appl. 27 (2019), 962-972.
Zhao, J.; Butt, S.I.; Nasir, J.; Wang, Z.; Tlili, I. Hermite-Jensen-Mercer type inequalities for Caputo fractional derivatives. J. Function Spaces, vol. 2020, Article ID 7061549, 11 pages. MR4081759. Zbl 1436.26026.
Ion, D.A. Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. Ann. Univ. Craiova Ser. Mat. Inform. 34 (2007), 83-88. MR2517875. Zbl 1174.26321.
Waheed, A.; Rehman, A.U.; Qureshi, M.I.; Shah, F.A.; Khan, K.A.; Farid, G. On Caputo k-fractional derivatives and associated inequalities. IEEE Access 7 (2019), 32137-32145.
Zhang, K.S.; Wan, J.P. p-convex functions and their properties. Pure Appl. Math. 23 (2007), 130-133. MR2313109. Zbl 1165.26312.
Mehreen, N.; Anwar, M. Hadamard and Fejér type inequalities for p-convex functions via Caputo fractional derivatives. Int. J. Nonlinear Anal. Appl. 13 (2022), 253-266.
Polyak, B. T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 7 (1966), 72-75. Zbl 0171.09501.
Farid, G.; Rehman, A.U.; Bibi, S.; Chu, Y. M. Refinements of two fractional versions of Hadamard inequalities for Caputo fractional derivatives and related results. Open J. Math. Sci. 5 (2021), 1–10.
Feng, X.; Feng, B.; Farid, G.; Bibi, S.; Xiaouan, Q.; Wu, Z. Caputo fractional derivative Hadamard inequalities for strongly m-convex functions. J. Function Spaces, vol. 2021, Article ID 6642655, 11 pages. MR4251347. Zbl 1475.26005.
Dong, Y.; Zeb, M.; Farid, G.; Bibi, S. Hadamard inequalities for strongly (α,m)-convex functions via Caputo fractional derivatives. J. Math., vol. 2021, Article ID 6691151, 16 pages. MR4200377. Zbl 1475.26005.
Cortez, M.V. Fejér type inequalities for (s, m)-convex functions in second sense. Appl. Math. Inf. Sci. 10 (2016), 1689-1696. MR3574086.
Nosheen, A.; Tariq, M.; Khan, K.A.; Shah, N.A.; Chung, J.D. On Caputo fractional derivatives and Caputo-Fabrizio integral operators via (s, m)-convex functions. Fractal Fract. 2023, 7, 187.
Farid, G.; Rehman, A.U.; Ain, Q.U. k-fractional integral inequalities of Hadamard type for (h-m)- convex functions. Comput. Methods. Differ. Equ. 8 (2020), 119-140. MR4045062. Zbl 1449.26028.
Zhang, Z.; Farid, G.; Mahreen, K. Inequalities for unified integral operators via strongly (α, h-m)- convexity. J. Funct. Space. 2021 Article ID 6675826, 11p. MR4271417. Zbl 1479.26012.
Yan, T.; Farid, G.; Bibi, S.; Nonlaopon, K. On Caputo fractional derivative inequalities by using strongly (α, h-m)-convexity. AIMS Math. 7 (2021), 10165-10179. MR4401705.
Farid, G.; Javed, A.; Rehman, A.U.; Qureshi, M.I. On Hadamard-type inequalities for differentiable functions via Caputo k-fractional derivatives. Cogent Math. 4 (2017), 1355429. MR3772289 . Zbl 1438.26060.
Farid, G.; Javed, A. On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives. Int. J. Nonlinear Anal. Appl. 9 (2018), 69-81. Zbl 1412.26046.
Zhao, S.; Butt, S.I.; Nazeer, W.; Nasir, J.; Umar, M.; Liu, Y. Some Hermite-Jensen-Mercer type inequalities for k-Caputo-fractional derivatives and related results. Adv. Difference Equ. (2020) 2020:262. MR4108515. Zbl 1482.26050.
Gasimov, Y.; Napoles-Valdes, J.E. Some refinements of Hermite-Hadamard inequality using k-fractional Caputo derivatives. Fract. Differ. Calc. 12 (2022), 209-221. MR4536414.
Toader, G.H. Some generalizations of convexity, Proc. Colloq. Approx. Optim, Cluj Napoca (Romania), (1985), 329-338. Zbl 0582.26003.
Farid, G.; Javed,A.; Rehman, A.U. Fractional integral inequalities of Hadamard type for m-convex functions via Caputo k-fractional derivatives. J. Fract. Calc. Appl. 10 (2019), 120-134. MR3843921. Zbl 1485.26033.
Noor, M.A.; Noor, K.I.; Awan, M.U.; Costache, S. Some integral inequalities for harmonic h-convex functions. Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 77 (2015), 5-16. Zbl 1349.26063.
Latif, M.A.; Dragomir, S.S.; Momoniant, E. Some Fejér type inequalities for harmonic-convex functions with applications to special means. Int. J. Anal. Appl. 13 (2017), 1-14. Zbl 1378.26013.
Hussain, R.; Ali, A.; Ayub, A.; Latif, A. Some new fractional integral inequalities for harmonically h-convex via Caputo k-fractional derivatives. Bull. Int. Math. Virtual Inst., 11 (2021), 99-110. MR4187052 . Zbl 1499.26122.
Özdemir, M.E.; Akdemri, A.O.; Set, E. On (h-m)-convexity and Hadamard-type inequalities. Transylv. J. Math. Mech. 8 ((2016), 51-58. MR3531967 .
Mishra, L.N.; Ain, Q.U.; Farid, G.; Rehman, A.U. k-fractional integral inequalities for (h,m)- convex functions via Caputo k-fractional derivatives. Korean J. Math. 27 (2019), 357-374. MR3982933. Zbl 1428.26046.
Noor, M.A.; Noor, K.I.; Awan, M.U. Generalized convexity and integral inequalities. Appl. Math. Inf. Sci. 9 (2015), 233-243.
Noor, M.A. Differentiable non-convex functions and general variational inequalities. Appl. Math. Comput. 199 (2008), 623-630. Zbl 1147.65047.
Farid, G.; Javed, A.; Rehman, A.U. On Hadamard inequalities for n-times differentiable functions which are relative convex via Caputo k- fractional derivatives. Nonlinear Anal. Forum 22 (2017), 17-28. MR3731845. Zbl 1414.26045.
He, W.F.; Farid, G.; Mahreen, K.; Zahra, M.; Chen, N. On an integral and consequent fractional integral operators via generalized convexity. AIMS Math. 6 (2020), 7632-7648. MR4161117. Zbl 1484.26028.
Baloch, I.A.; Abdeljawad, T.; Bibi, S.; Mukheimer, A.; Farid, G.; Haq, A.U. Some new Caputo fractional derivative inequalities for exponentially (θ, h-m)–convex functions. AIMS Math. 7 (2) (2021), 3006-3026. MR4347798.
Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for solution of fractional differential equations with generalized Riemann-Liouville fractional derivative. Fract. Calc. Appl. Anal. 12 (2009), 299-318. MR2572712. Zbl 1182.26011.
Liao, Y.; Deng, J.; Wang, J. Riemann-Liouville fractional Hermite-Hadamard inequalities, part II, for twice differentiable geometric- arithmetically s-convex functions. J. Inequal. Appl. 2013, 2013, 517. MR3212961. Zbl 1297.26015.
Samraiz, M.; Perveen, Z.; Rahman, F.; Khan, M.A.; Nisar, K.S. Hermite-Hadamard fractional inequalities for differentiable functions. Fractal Fract. 2022, 6, 60.
Almeida, R. A. Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 460-481. Zbl 1465.26005.
Rashid, S.; Ashraf, R.; Nisar, K.S.; Abdeljawad, T. Estimation of integral inequalities using the generalized fractional derivative operator in the Hilfer sense. J. Math., 2020, Article ID 1626091, 15 pages. MR4171176. Zbl 1489.26047.
Muhammad Tariq
Department of Basic Sciences and Related Studies,
Mehran University of Engineering and Technology,
Jamshoro 76062, Pakistan.
e-mail: captaintariq2187@gmail.com
Sotiris K. Ntouyas
Department of Mathematics, University of Ioannina,
451 10 Ioannina, Greece
e-mail: sntouyas@uoi.gr
Asif Ali Shaikh
Department of Basic Sciences and Related Studies,
Mehran University of Engineering and Technology,
Jamshoro 76062, Pakistan.
and
Department of Mathematics, Near East University,
99138 Mersin, Turkey.
e-mail: asif.shaikh@faculty.muet.edu.pk
Jessada Tariboon
Intelligent and Nonlinear Dynamic Innovations, Department of Mathematics,
Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok,
Bangkok 10800, Thailand.
e-mail: jessada.t@sci.kmutnb.ac.th