Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 273 -- 316

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

FIVE LECTURES ON CLUSTER THEORY

Ray Maresca

Abstract. In this paper, we will present the author's interpretation and embellishment of five lectures on cluster theory given by Kiyoshi Igusa during the Spring semester of 2022 at Brandeis University. They are meant to be used as an introduction to cluster theory from a representation-theoretic point of view.

2020 Mathematics Subject Classification: 08-02; 16-02
Keywords: clusters; tilting modules, 2-term silting complex; quiver Grassmannian

Full text

References

  1. T. Adachi, O. Iyama, Reiten, I. τ-tilting theory, Compos. Math., 150 (3) (2014), 415-452. MR3187626. Zbl 330.16004.

  2. C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier, 59(6):2525–2590, 2009. MR2640929. Zbl 181.18006.

  3. I. Assem, D. Simson, A. Skowronski, Elements of the representation theory of associative algebras: volume 1: techniques of representation theory, Cambridge University Press. 2006. MR2197389. Zbl 092.16001.

  4. T. Bridgeland, Scattering diagrams, Hall algebras and stability conditions, Algebr. Geom., 4 (5) (2017), pp. 523-561. MR3710055. Zbl 388.16013.

  5. N. Broomhead, D. Pauksztello, D. Ploog, Discrete derived categories II: the silting pairs CW complex and the stability manifold, J. Lond. Math. Soc. (2) 93 (2016), 273-300. MR3483114. Zbl 376.16006.

  6. T. Brüstle, G. Dupont, M. Perotin, On maximal green sequences, May 2012, International Mathematics Research Notices, 2014 (16), DOI:10.1093/imrn/rnt075. MR3250044. Zbl 346.16009.

  7. T. Brüstle, D. Smith, H. Treffinger, Wall and chamber structure for finite-dimensional algebras, Advances in Mathematics Volume 354, 1 October 2019, 106746. MR3989130. Zbl 1470.16024.

  8. A. B. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math., 204 (2) (2006), 572-618. MR2249625. Zbl 1127.16011.

  9. P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), no. 3, 595-616. MR2250855. Zbl 119.16013.

  10. G. Cerulli Irelli, Three lectures on quiver Grassmannians, Preprint, arXiv:2003.08265 [math.AG], 2020. MR4186968. Zbl 1469.16033.

  11. F. Chapoton, S. Fomin, A. Zelevinsky, Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45, no. 4, 537–566, 2002. MR1941227. Zbl 1018.52007.

  12. W. Crawley-Boevey, Lectures on representations of quivers, Bielefeld University, https://www.math.uni-bielefeld.de/~wcrawley/quivlecs.pdf.

  13. R. Dehy, B. Keller, On the combinatorics of rigid objects in 2-Calabi-Yau categories, Int. Math. Res. Not. IMRN (11) (2008), Article rnn029. MR2428855. Zbl 1144.18009.

  14. L. Demonet, O. Iyama, G. Jasso, τ-tilting finite algebras, bricks, and g-vectors, Int. Math. Res. Not., 2019 (3) (07 2017), 852-892. MR3910476. Zbl 1485.16013.

  15. H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials and their representations II: applications to cluster algebras, J. Am. Math. Soc., 23 (3) (2010), 749-790. MR2629987. Zbl 1208.16017.

  16. S. Fomin, A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497–529. MR1887642. Zbl 1021.16017.

  17. S. Fomin, A. Zelevinsky, Cluster algebras. II: Finite type classification, Invent. Math., 154 (1) (2003), 63–121. MR2004457. Zbl 1054.17024.

  18. S. Fomin, A. Zelevinsky,Cluster algebras. IV. Coefficients, Compos. Math., 143(1):112–164, 2007. MR2295199. Zbl 1127.16023.

  19. C. Fu, c-Vectors via τ-tilting theory, J. Algebra, 473 (2017), 194-220. MR3591148. Zbl 1385.16009.

  20. P. Gabriel, Unzerlegbare darstellungen. I, Manuscripta Math., 6:71–103; correction, ibid. 6 (1972), 309, 1972. MR0332887. Zbl 0232.08001.

  21. P. Gabriel, Indecomposable representations. II, Sympos. math. 11, Algebra commut., Geometria, Convegni 1971/1972 (1973), 81-104. MR0340377. Zbl 0276.16001.

  22. M. Gross, P. Hacking, S. Keel, M. Kontsevich, Canonical bases for cluster algebras, J. Am. Math. Soc., 31 (2) (11 2017), 497-608 MR3758151. Zbl 1446.13015.

  23. D. Happel, C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc., Vol. 274, No. 2 (Dec., 1982), 399-443. MR0675063. Zbl 0503.16024.

  24. D. Happel, L. Unger, Almost complete tilting modules, Proc. Amer. Math. Soc., 107(3) (1989), 603–610. MR0984791. Zbl 0675.16012.

  25. M. Hoshino, Y. Kato, J. Miyachi, On t-structures and torsion theories induced by compact objects, J. Pure Appl. Algebra 167 (2002), 15–35. MR1868115. Zbl 1006.18011.

  26. L. A. Hügel, Silting objects, Bull. of the Lon. Math. Soc. Volume 51, Issue 4 August 2019, 658-690 MR3990384. Zbl 1490.16017.

  27. K. Igusa, Linearity of stability conditions, Communications in Algebra, 48(4), June 2017 DOI:10.1080/00927872.2019.1705466. MR4079339. Zbl 1457.16005.

  28. K. Igusa, K. Orr, G. Todorov, J. Weyman, Cluster complexes via semi-invariants, Compos. Math., 145 (4) (2009), 1001-1034. MR2521252. Zbl 1180.14047.

  29. K. Igusa, K. Orr, G. Todorov, J., Weyman, Modulated semi-invariants, Preprint, arXiv:1507.03051 [math.RT], 2015.

  30. K. Igusa, R. Schiffler, Exceptional sequences and clusters. Journal of Algebra 323 (2010), 2183-2202. MR2596373. Zbl 1239.16019.

  31. K. Igusa, G. Todorov, Picture groups and maximal green sequences, Electronic Research Archive 2021, Volume 29, Issue 5: 3031-3068. doi: 10.3934/era.2021025. MR4342244. Zbl 1497.16014.

  32. C. Ingalls, H. Thomas, Noncrossing partitions and representations of quivers, Compos. Math., 145(6) (2009), 1533–1562. MR2575093. Zbl 1182.16012.

  33. B. Keller, D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Ser. A 40 (1988), no. 2, 239–25. MR0976638. Zbl 0671.18003.

  34. A. D. King, Moduli of representations of finite dimensional algebras, QJ Math., 45 (4) (1994), 515-530. MR1315461. Zbl 0837.16005.

  35. K. Lee, R. Schiffler, Positivity for cluster algebras. Annals of Mathematics, SECOND SERIES, Vol. 182, No. 1 (July, 2015), 73-125. MR3374957. Zbl 1350.13024.

  36. R. Marsh, M. Reineke, A. Zelevinsky, Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 no.10 (2003), 4171-4186. MR1990581. Zbl 1042.52007.

  37. A. Nájera Chávez, On the c-vectors of an acyclic cluster algebra, Int. Math. Res. Not., Volume 2015, Issue 6 (2015), 1590–1600. MR3340366. Zbl 1350.13027.

  38. T. Nakanishi, A. Zelevinsky, On tropical dualities in cluster algebras, Contemp. Math. 565(2012), 217-226. MR2932428. Zbl 1317.13054.

  39. R. Schiffler, Quiver representations, CMS Books in Mathematics, Springer International Publishing, 2014. MR3308668. Zbl 1310.16015.

  40. A. Schofield, General representations of quivers, Proc. of The Lon. Math. Soc, Vol. 65, (1992), 46-64. MR1162487. Zbl 0795.16008.

  41. A. Skowroński, Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc., 120(1) (1994), 19–26. MR1156473. Zbl 0831.16014.

  42. H. Thomas, An introduction to the lattice of torsion classes, Bull. of the Iran. Math. Soc., 47 (2021), 35-55. MR4340902. Zbl 1485.16010.

  43. H. Treffinger, On sign-coherence of c-vectors, Journal of Pure and Applied Algebra, Volume 223, Issue 6, June 2019, 2382-2400 MR3906554. Zbl 1461.16018.

  44. H. Treffinger, τ-tilting theory -- An introduction Preprint, arXiv:2106.00426 [math.RT], 2022

  45. M. Vejdemo-Johansson, Sketches of a platypus: persistent homology and its algebraic foundations, Preprint, arXiv:212.5398 [math.AT], 2013. Algebraic topology: applications and new directions, Contemp. Math., 620 (2014), 295–319. MR3290097. Zbl 1329.55003.





Ray Maresca
Brandeis University,
Department of Mathematics,
415 South St. Waltham, MA, USA.
e-mail: raymondmaresca@brandeis.edu

http://www.utgjiu.ro/math/sma