Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 317 -- 328

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

NEW DYNAMIC FIXED POINT RESULTS IN MENGER SPACES

Besma Laouadi, Liliana Guran, Taki Eddine Oussaeif, Leila Benaoua and Ioana Camelia Tişe

Abstract. The objective of this paper is to generalize and improve some results in fixed point theorems in both complete metric space and Menger space. These results are generalizations of the analogous ones recently proved by Khojasteh [5], Demma [1], Yildirim [13], where we establish a dynamic information about their other fixed points if there exist i.e the distance between two fixed point in case of metric space and their equivalent in probabilistic metric space. Some illustrative examples are furnished, which demonstrate the validity of the hypotheses.
As an application to our main result, we derive a uniqueness fixed point theorem for a self-mapping under strong conditions.

2020 Mathematics Subject Classification: Primary 47H10; Secondary 54H25.
Keywords: Fixed point; Menger space; Picard sequence; Complete metric space.

Full text

References

  1. M. Demma and P. Vetro, Picard Sequence and Fixed Point Results on b-Metric Spaces, Journal of Function Spaces, (2015), 6 pages. MR3319199. Zbl 1321.54079.

  2. O. Hadzic, E. Pap, Fixed point theory in probabilistic metric spaces, Springer Science and Business Media 536, 2001. MR1896451. Zbl 0994.47077.

  3. M. Imdad, B. Pant, and S. Chauhan, Fixed point theorems in Menger spaces using the (CLRST) property and applications, J. Nonlinear Anal. Optim., (2012), 225-237. MR2982410. Zbl 1394.54023.

  4. Jin-Xuan Fang, Common fixed point theorems of compatible and weakly compatible maps in Menger spaces, Nonlinear Analysis: Theory, Methods and Applications, (2009), 1833-1843. MR2524396. Zbl 1172.54027.

  5. F. Khojasteh, M. Abbas, S. Costache, Two new types of fixed point theorems in complete metric spaces. In Abstract and Applied Analysis (2014). MR3228067. Zbl1436.54035.

  6. B. Laouadi, T.E. Oussaeif, L. Benaoua, L. Guran and S. Radenovic, Some new fixed point results in b-metric space with rational generalized contractive condition. Zh. Sib. Fed. Univ. Mat. Fiz. 16 (2023), no.4, 506–518. MR4625027. Zbl 07668232.

  7. K. Menger, Statistical Metrics. Proceedings of the National Academy of Sciences of the United States of America, 28 (12) (1942), 535-537. MR0007576. Zbl 0063.03886.

  8. S. N. Mishra, Common fixed points of compatible mappings in PM spaces, Math. Japon. 36 (1991), 283-289. MR1095742. Zbl 0731.54037.

  9. D. O'Regan, R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput. 195 (2008), 86. MR2379198. Zbl 1135.54315.

  10. B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Elsevier, North Holland, New York 15, 1983. MR0790314. Zbl 0546.60010.

  11. V. M. Sehgal, A. T. Bharucha-Reid, Fixed point of contraction mappings on PM spaces, Math. Syst. Theory 6 (1972), 97-100. MR0310858. Zbl 0244.60004.

  12. B. Singh, S. Jain, A fixed point theorem in Menger space through weak compatibility. Journal of Mathematical Analysis and Applications 301(2) (2005), 439-448. MR2105684. Zbl 1068.54044.

  13. I. Yildirim, A. Ansari, Some new fixed point results in b-metric spaces. Topological Algebra and its Applications 6 (2018), 102-106. MR3808334. Zbl 1398.54085.



Besma Laouadi, Taki Eddine Oussaeif, Leila Benaoua
Dynamic Systems and Controls Laboratory (DSC),
Department of Mathematics, Larbi Ben M'hidi University,
Oum El Bouaghi, Algeria.
E-mails: laouadi.besma@univ-oeb.dz, taki_maths@live.fr, benaoualeila@gmail.com


Liliana Guran
Department of Hospitality Services, Babeş-Bolyai University,
Horea Street, no. 7, 400174, Cluj-Napoca, Romania.
E-mail: liliana.guran@ubbcluj.ro



Ioana Camelia Tişe
Department of Mathematics, Babeş-Bolyai University,
M. Kogălniceanu Street, no. 1, 400084, Cluj-Napoca, Romania.
E-mail: ti_camelia@yahoo.com


http://www.utgjiu.ro/math/sma