Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 329 -- 341
This work is licensed under a Creative Commons Attribution 4.0 International License.FIXED POINTS IN BICOMPLEX VALUED S-METRIC SPACES WITH APPLICATIONS
G. Siva
Abstract. This article introduces the idea of bicomplex valued S-metric space and deduces some of its features. Additionally, for bicomplex valued S-metric spaces, some fixed point results of contraction maps are shown to meet various categories of rational inequalities. Moreover, these results generalize certain significant, well-known results. An example is provided to highlight our major result. Furthermore, a theorem guaranteeing the existence of the one and only solution to the linear system of equations was developed using our main result.
2020 Mathematics Subject Classification: Primary 54E40; Secondary 54H25
Keywords: Complex number; Partial order; Linear equation; Nonsingular.
References
A. Azam, B. Fisher, and M. Khan, Common fixed point theorems in complex valued metric spaces, Numerical Functional Analysis and Optimization, 32 (2011), 243-253. MR2916851. Zbl 1245.54036.
I. Beg, S. K. Datta, and D. Pal, Fixed point in bicomplex valued metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 717-727.
J. Choi, S. K. Datta, T. Biswas and N. Islam, Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces, Honam Mathematical J., 39(1) (2017) 115-126. MR3676679. Zbl 1376.30035.
S. K. Datta, D. Pal, N. Biswas, and R. Sarkar, On the study of common fixed point theorem in a bicomplex valued b-metric spaces, J. Cal. Math. Soc., 16 (2020), 73-94.
S. K. Datta, D. Pal, R. Sarkar and J. Saha, Some common fixed point theorems for contractive mappings in bicomplex valued b-metric spaces, Bull. Cal. Math. Soc., 112 (2021), 329-354.
N. V. Dung, N. T. Hieu, and S. Radojevic, Fixed point theorems for g-monotone maps on partilaly ordered S-metric spaces, Filomat, 28 (2014), 1885-1898. Zbl 1462.54086.
I. H. Jebril, S. K. Datta, R. Sarkar and N. Biswas, Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces, J. Interdisciplinary Math., 22 (7) (2019), 1071-1082.
N. M. Mlaika, Common fixed points in complex S-metric space, Adv. Fixed Point Theory, 4 (2014), 509-524.
N. Y. Ozgur, and N. Ta¸s, The Picard Theorem on S-Metric Spaces, Acta Mathematica Scientia, 38 (2018), 1245-1258. MR3816479. Zbl 1438.34215.
K. Prudhvi, Fixed point theorems in S-metric spaces, Univers. J. Comput. Math., 3 (2015), 19-21.
S. Sedghi, and N. V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik, 66 (2014), 113-124. MR3164931. Zbl 1462.54102.
S. Sedghi, N. Shobe, and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat Vesnik, 64 (2012), 258-266. MR2911870. Zbl 1289.54158.
C. Segre, Lerappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann., 40 (1892), 413-467. MR1510728. Zbl 24.0640.01.
G. Siva, Bicomplex valued bipolar metric spaces and fixed point theorems, Mathematical Analysis and its Contemporary Applications, 4 (2022), 29-43.
G. Siva, Fixed points of contraction mappings with variations in S-metric space domains, The Mathematics Student, 91 (2022), 173-185. MR4602271.
G. Siva, and S. Loganathan, Weak convergence of fixed point iterations in S-metric spaces, Journal of Mahani Mathematical Research, 13 (2023), 565-576.
G. Siva
Department of Mathematics, Alagappa University
Karaikudi-630 003, India.
e-mail: gsivamaths2012@gmail.com