Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 18 (2023), 343 -- 363
This work is licensed under a Creative Commons Attribution 4.0 International License.EXISTENCE OF POSITIVE SOLUTIONS OF A TERMINAL VALUE PROBLEM FOR FOURTH-ORDER DIFFERENTIAL EQUATIONS
Mohammed Dahmane and Mohammed Derhab
Abstract. We are concerned with the existence of positive solutions of a terminal value problem for a class of fourth-order differential equation. Our arguments are based to establish sufficient conditions which guarantee the existence of at least one positive solution by constructing a cone on which a positive operator is defined. We then apply a theorem of Guo-Krasonelskii to prove the existence of positive solutions of our problem.
2020 Mathematics Subject Classification: 47N20; 34B40; 34B18; 47H10
Keywords: Fourth order differential equation; positive solutions; Guo-Krasnoselskii theorem; cone preserving map.
References
R.P. Agarwal and D. O'Regan, Infinite interval problems for differential, difference and integral equations, Kluwer Academic Publishers, Dordrecht, 2001. MR1845855. Zbl 0988.34002.
C. Avramescu, Sur l'existence des solutions convergentes des systèmes d'équations différentielles non linéaires, Ann. Mat. Pura Appl. 81(1969), 147-168. MR0249738. Zbl 0196.10701.
D. D. Bainov, Some remarks concerning a differential equation of arbitrary order (in Russian), Differ. Uravn., 3(1967), 2003-2006. MR221003. Zbl 0153.10702.
J. V. Baxley, Existence and uniqueness for nonlinear boundary value problems on infinite intervals, J. Math. Anal. Appl. \text147(1990), 122-133. MR1044690.
Zbl 0719.34037.J. Chu, On an infinite-interval boundary-value problem in geophysics, Monatsh. Math. \text188(2019), 621-628. MR3928764. Zbl 07045083.
C. Corduneanu, Integral equations and stability of feedback systems, Academic Press, New York-London, 1973. MR0358245. Zbl 0273.45001.
S. Djebali, O. Kavian, T. Moussaoui, Qualitative properties and existence of solutions for a generalized fisher-like equation, Iran. J. Math. Sci. Inform. 4(2009), 65-81. MR2723112. Zbl 1301.34020.
A. Granas, R.B. Guenther, J.W. Lee, D. O'Regan, Boundary value problems on infinite intervals and semiconductor devices, J. Math. Anal. Appl. \text116(1986), 335-348. MR0842804. Zbl 0594.34019.
O. A. Gross, The boundary value problem on an infinite interval: Existence, uniqueness, and asymptotic behavior of bounded solutions to a class of nonlinear second order differential equations, J. Math. Anal. Appl., 7(1963), 100-109. MR153901. Zbl 0119.07701.
D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, Inc., Boston, MA, 1988. MR959889. Zbl 0661.47045.
P. Hartman, A. Wintner, On the non-increasing solutions of y\prime \prime =f( x,y,y\prime ) , Amer. J. Math. 73(1951), 390-404. MR0042004. Zbl 0042.32601.
E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64(1948), 234-252. MR0027925. Zbl 0031.35402.
L. K. Jackson, Subfunctions and second order ordinary differential inequalities, Advances in Math. 2(1968), 307-363. MR37:5462. Zbl 0197.06401.
A. G. Kartsatos, A boundary value problem on an infinite interval, Proc. Edinburgh Math. Soc. 19(1975), 245-252. MR377165. Zbl 0315.34022.
A. G. Kartsatos, The Leray-Schauder theorem and the existence of solutions to boundary value problems on infinite intervals, Indiana Univ. Math. J. 23(1973/74/1974), 1021-1029. MR340697. Zbl 0303.34014.
R. E. Kidder, Unsteady flow of gas through a semi-infinite porous medium, J. Appl. Mech. \text24(1957), 329-332. MR0092536. Zbl 0078.40903.
T. K. Kravčenko, A. I. Jablonskiĭ, Solution of an infinite boundary value problem for a certain equation of the third order (in Russian), Differ. Uravn. 1(1965), 327-329. MR188532. Zbl 0173.34404.
K. G. Mavridis, P. Ch. Tsamatos, Existence of positive solutions of a terminal value problem for second order differential equations, Communications in Applied Analysis 15(2011), 539-546. Zbl 1266.47115.
T. Moussaoui, R. Precup, Existence of solutions for second-order differential equations and systems on infinite intervals, Electron. J. Differential Equations 2009(2009), 13 pages. Zbl 1179.34029.
T. Y. Na, Computational methods in engineering boundary value problems, Academic Press, New York-London, 1979. MR561710. Zbl 0456.76002.
Z. Nehari, On a nonlinear differential equation arising in nuclear physics, Proc. Roy. Irish. Acad. \text62(1961-1963), 117-135. MR165176. Zbl 0124.30204.
W. Robert Mann, F. Wolf, Heat transfer between solids and gasses under nonlinear boundary conditions, Quart. Appl. Math. \text9(1951), 163-184. MR42596. Zbl 0043.10001.
S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives. theory and applications. Gordon and Breach Science Publishers, Yverdon, 1993. MR1347689. Zbl 0818.26003.
W. E. Shreve, Boundary value problems for y\prime \prime =f( x,y,y\prime ) on [ a,+∞ ) , SIAM J. Appl. Math. 17(1969), 84-97. MR249712. Zbl 0169.41902.
W. E. Shreve, Terminal value problems for second order nonlinear differential equations, SIAM J. Appl. Math. 18(1970), 783-791. MR261076. Zbl 0198.11603.
P. K. Wong, Existence and asymptotic behavior of proper solutions of a class of second order nonlinear differential equations, Pacific J. Math. 13(1963), 737-760. MR153912. Zbl 0115.07203.
B. Yan, D. O'Regan, R.P. Agarwal, Unbounded solutions for singular boundary value problems on the semi-infinite interval: upper and lower solutions and multiplicity, J. Comput. Appl. Math 197(2006), 365-386. MR2260412. Zbl 1116.34016.
Mohammed Dahmane
Dynamic Systems and Applications Laboratory,
Department of Mathematics, Faculty of Sciences,
University Abou-Bekr Belkaid Tlemcen, B.P.119, Tlemcen, 13000, Algeria.
e-mail: dahmo_md@yahoo.fr
Mohammed Derhab
Dynamic Systems and Applications Laboratory,
Department of Mathematics, Faculty of Sciences,
University Abou-Bekr Belkaid Tlemcen, B.P.119, Tlemcen, 13000, Algeria.
e-mail: derhab@yahoo.fr