Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 19 (2024), 197 -- 215

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ON SIMPLICITY OF CUNTZ ALGEBRAS AND ITS APPLICATIONS

Massoud Amini and Mahdi Moosazadeh

Abstract. Cuntz algebra 𝒪2 is the universal C*-algebra generated by two isometries s1, s2 satisfying s1s1*+s2s2*=1. This is separable, simple, infinite C*-algebra containing a copy of any nuclear C*-algebra. The C*-algebra 𝒪2 plays a central role in the modern theory of C*-algebras and appears in many fundamental statements, including a formulation of the celebrated Uniform Coefficient Theorem (UCT). There are several extensions of this notion, including Cuntz algebra 𝒪n, Cuntz-Krieger algebra ℱA for a matrix A, Cuntz-Pimsner algebra 𝒪X and its relaxation by Katsura for a C*-correspondence X, and Cuntz-Nica-Pimsner algebra 𝒩𝒪X, for a product system X. We give an overview of the construction of these classes of C*-algebras with a focus on conditions ensuring their simplicity, which is needed in the Elliott Classification Program, as it stands now. The results we present are now part of the literature, but we hope to shed a light on recent developments in a fascinating area of modern operator algebras.

2020 Mathematics Subject Classification: Primary 46L05; Secondary 46L08
Keywords: Cuntz algebra; Cuntz-Krieger algebra; Cuntz-Pimsner algebra; Cuntz-Nica-Pimsner algebra; Kishimoto condition; twisted crossed products; simplicity

Full text

References

  1. W. Arveson, Continuous analogues of Fock space, Mem. Amer. Math. Soc. 80(1989), iv+66. MR0987590. Zbl 0697.46035.

  2. B. Blackadar, Shape theory for C*-algebras, Math. Scand. 56(1985), 249--275. MR0813640. Zbl 0615.46066.

  3. T.M. Carlsen, N.S. Larsen, A. Sims, S.T. Vittadello, Co‐universal algebras associated to product systems and gauge‐invariant uniqueness theorems, Proc. London Math. Soc. 103(2011), 563--600. MR2837016. Zbl 1236.46060.

  4. J. Cuntz, Simple C*-algebras genera0467330isom0467330etries, Comm. Math. Phys. 57(1977), No. 2, 173--185. MR0467330. Zbl 0399.46045.

  5. J. Cuntz, W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math. 56(1980), No. 3, 251--268. MR0561974. Zbl 0434.46045.

  6. H.T. Dinh, Discrete product systems and their C*-algebras, J. Funct. Anal. 102(1991), No. 1, 1--34. MR1138835. Zbl 0745.46057.

  7. D. Drinen, M. Tomforde, The C*-algebras of arbitrary graphs, Rocky Mountain J. Math. 35(2005), No. 1, 105--135. MR2117597. Zbl 1090.46050.

  8. M. Enomoto, Y. Watatani, A graph theory for C*-algebras, Math. Japan. 25(1980), 435--442. MR0594544. Zbl 0455.46053.

  9. M. Eryüzlü, M. Tomforde, Simplicity of Cuntz-Pimsner algebras, arXiv: 2212.00248 [math.OA].

  10. R. Exel, R., Amenability for Fell bundles, J. Reine angew. Math. 492(1997), 41--73. MR1488064. Zbl 0881.46046.

  11. N.J. Fowler, Compactly-aligned discrete product systems and generalization of ℱ, Internat. J. Math. 10(1999), 721--738. MR1715181. Zbl 1110.46306.

  12. N.J. Fowler, Discrete product systems of Hilbert bimodules, Pacific J. Math. 204(2002), 335--375. MR1907896. Zbl 1059.46034.

  13. N.J. Fowler, P.S. Muhly, I. Raeburn, Representations of Cuntz-Pimsner algebras, Indiana Univ. Math. J. 52(2003), 569--605. MR1986889. Zbl 1034.46054.

  14. N.J. Fowler, I. Raeburn, The Toeplitz algebra of a Hilbert bimodule, Indiana Univ. Math. J. 48(1999), 155--181. MR1722197. Zbl 0938.47052.

  15. T. Giordano, A. Sierakowski, Purely infinite partial crossed products, J. Funct. Anal. 266(2014), 5733--5764. MR3182957. Zbl 1305.46058.

  16. T. Kajiwara, C. Pinzari, Y. Watatani, Ideal structure and simplicity of the C*-algebras generated by Hilbert bimodules, J. Funct. Anal. 159(1998), 295--322. MR1658088. Zbl 0942.46035.

  17. T. Kajiwara, C. Pinzari, C., Y. Watatani, Hilbert C*-bimodules and countably generated Cuntz-Krieger algebras, J. Operator Theory 45(2001), 3--18. MR1823059. Zbl 1005.46028.

  18. T. Katsura, On C*-algebras associated with C*-correspondences, J. Funct. Anal. 217(2004), 36--401. MR2102572. Zbl 1067.46054.

  19. T. Katsura, A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras I, fundamental results, Trans. Amer. Math. Soc. 356(2004), No. 11, 4287--4322. MR2067120. Zbl 1049.46039.

  20. T. Katsura, A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras II, examples, Internat. J. Math. 17(2006), No. 7, 791--833. MR2253144. Zbl 1107.46040.

  21. T. Katsura, A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras III, ideal structures, Ergodic Theory Dynam. Sys. 26 (2006), No. 6, 1805--1854. MR2279267. Zbl 1136.46041.

  22. T. Katsura, A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras IV, pure infiniteness, J. Funct. Anal. 254(2008), No. 5, 1161--1187. MR2386934. Zbl 1143.46034.

  23. A. Kishimoto, Simple crossed products of C*-algebras by locally compact abelian groups, Yokohama Math. J. 28(1980), 69--85.

  24. A. Kishimoto, Outer automorphisms and reduced crossed products of simple C*-algebras, Comm. Math. Phys. 81(1981), 429--435. MR0634163. Zbl 0467.46050.

  25. A. Kumjian, D. Pask, Higher rank graph C*-algebras, New York J. Math. 6 (2000), 1--20. MR1745529. Zbl 0946.46044.

  26. A. Kumjian, D. Pask, I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math 184(1998), 161--174. MR1626528. Zbl 0917.46056.

  27. A. Kumjian, D. Pask, I. Raeburn, J. Renault, Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144(1997), 505--541. MR1432596. Zbl 0929.46055.

  28. B.K. Kwaśniewski, B. K., W. Szymański, Pure infiniteness and ideal structure of C*-algebras associated to Fell bundles, J. Math. Anal. Appl. 445(2017), 898--943. MR3543802. Zbl 1382.46043.

  29. P. Muhly, B. Solel, On the Morita equivalence of tensor algebras, Proc. London Math Soc. 81(2000), 113--168. MR1757049. Zbl 1036.46046.

  30. A. Nica, C*-algebras generated by isometries and Wiener–Hopf operators, J. Operator Theory 27(1992), 17--52. MR1241114. Zbl 0809.46058.

  31. D. Olesen, G.K. Pedersen, Applications of the Connes spectrum to C*-dynamical systems. III, J. Funct. Anal. 45(1982), 357--390. MR0650187. Zbl 0511.46064.

  32. N.C. Phillips, An introduction to crossed product C*-algebras and minimal dynamics, unpublished notes, https://pages.uoregon.edu/ncp

  33. M.V. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by \mathcal Z, in: Free probability theory, Amer. Math. Soc., Providence, RI, 1997, pp. 189--212. 7. MR1426840. Zbl 0871.46028.

  34. J. Quigg, Discrete C*-coactions and C*-algebraic bundles, J. Aust. Math. Soc., Series A 60(2)(1996), 204--221. MR1375586. Zbl 0851.46047.

  35. I. Raeburn, Graph algebras, CBMS Regional Conference Series in Mathematics 103, Amer. Math. Soc., Providence, 2005. MR2135030. Zbl 1079.46002.

  36. I. Raeburn, D.P. Williams, Morita equivalence and continuous-trace C*-algebras, Amer. Math. Soc., Providence, 1998. MR1634408. Zbl 0922.46050.

  37. D.I. Robertson, A. Sims, Simplicity of C*-algebras associated to higher-rank graphs, Bull. London Math. Soc. 39(2)(2007), 337--344. MR2323468. Zbl 1125.46045.

  38. J. Schweizer, Dilations of C*-correspondences and the simplicity of Cuntz-Pimsner algebras, J. Funct. Anal 180(2001), 404--425. MR1814994. Zbl 0985.46033.

  39. A. Sims, T. Yeend, Cuntz-Nica-Pimsner algebras associated to product systems of Hilbert bimodules, J. Operator Theory 64(2010), No. 2, 349–376. MR2718947. Zbl 1240.46080.



Massoud Amini
Tarbiat Modares University,
Department of Mathematics, Faculty of Mathematical Sciences, Tehran 14115-134, Iran.
e-mail: mamini@modares.ac.ir

Mahdi Moosazadeh
Tarbiat Modares University,
Department of Mathematics, Faculty of Mathematical Sciences, Tehran 14115-134, Iran.
e-mail: mahdimoosazadeh7@gmail.com

http://www.utgjiu.ro/math/sma