Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 19 (2024), 233 -- 244

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

SHARP HARDY'S INEQUALITIES VIA CONFORMABLE FRACTIONAL INTEGRALS

Noureddine Azzouz and Bouharket Benaissa

Abstract. The aim of this research is to present Hardy-type inequalities with a sharp constant that are related to the fractional conformable integral operator.

2020 Mathematics Subject Classification: 26D10; 26D15.
Keywords: Hardy's inequality; Minkowski's inequality; fractional conformable operator; monotone function.

Full text

References

  1. T. Abdeljawad, On conformable fractional calculus. Journal of Computational and Applied Mathematics. 279 (2015) 57-66. MR3293309. Zbl 1304.26004.

  2. A. Akkurt, M. E. Yildirim and H. Yildirim, On some integral inequalities for conformable fractional integrals. RGMIA Research Report Collection. 19 (2016), Article 107.

  3. B. Benaissa, Some inequalities on time scales similar to reverse Hardy's inequality. Rad Hazu. Matematicke Znanosti. 26 (2022), 113-126. https://doi.org/10.21857/mnlqgcr4ry. MR4489509. Zbl 1496.26019

  4. K. Bogdan and B. Dyda, The best constant in a fractional Hardy inequality. Math. Nachr. 284; 56 (2011), 629-638. Zbl 1217.26025.

  5. V.I. Burenkov, Function spaces. Main integral inequalities related to Lp-spaces. Peoples- Friendship University. Moscow. (1989), 96p. (in Russian).

  6. G. H. Hardy, Notes on some points in the integral calculus. LXIV. Further inequalities between integrals. Messenger of Math. 57 (1928), 12-16.

  7. G. H. Hardy, Notes on some points in the integral calculus. LX. An inequality between integrals. Messenger of Math. 54 (1925), 150-156.

  8. U. Katugampola, A new fractional derivative with classical properties. ArXiv:1410.6535v2.

  9. R. Khalil, M. Al horani, A. Yousef and M. Sababheh, A new definition of fractional derivative. Journal of Computational Apllied Mathematics. 264 (2014), 65-70. MR3164103. Zbl 1297.26013.

  10. M. A. Khan, T. Ali, S. S. Dragomir and M. Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals. RGMIA Research Report Collection. 19 (2016), Article 138. MR3852935. Zbl 1396.26027.

  11. M. Musraini, Rustam Efendi, Endang Lily, Ponco Hidayah, Classical Properties on Conformable Fractional Calculus. Pure and Applied Mathematics Journal. 8:5 (2019), 83-87.

  12. S. H. Saker, D. O'Regan, M. R. Kenawy, R. P. Agarwal, Fractional Hard yy Type Inequalities via Conformable Calculus. Memoirs on Differential Equations and Mathematical Physics. 73 (2018), 131-140.

  13. M. Z. Sarikaya, Hardy Type Inequalities for Conformable Fractional Integrals. Konuralp Journal of Mathematics. 8 :1 (2020), 211-215. MR4092216.

  14. A.M. Caetano, A. Gogatishvili, B. Opic, Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness. Journal of Approximation Theory (ScieceDirect). 163 (2011), 1373-1399. MR2885422. Zbl 1238.46024.

  15. M. Z. Sarikaya, A. Akkurt, H. Budak, M. E. Yildirim and H. Yildirim, Hermite-Hadamard's inequalities for conformable fractional integrals. RGMIA Research Report Collection. 19 (2016), Article 83. MR3911374.

  16. M. Z. Sarikaya and H. Budak, New inequalities of Opial type for conformable fractional integrals. RGMIA Research Report Collection. 19 (2016) Article 104. MR3711015. Zbl 1424.26061.

  17. M. Z. Sarikaya and H. Budak, Opial type inequalities for conformable fractional integrals. RGMIA Research Report Collection. 19 (2016), Article 93. MR4036611. Zbl 1434.26066.

  18. M. Z. Sarikaya, H. Yaldiz and H. Budak, Steffensen's integral inequality for conformable fractional integrals. RGMIA Research Report Collection. 19 (2016), Article 94. Zbl 1378.26022.

  19. A. Senouci and N. Azzouz, Hardy type inequality with sharp constant for 0 < p < 1. Eurasian Math. J. 10;1 (2019), 52-58.

  20. C. Yildiz, M. E. Ozdemir and H. K. Onelan, Fractional integral inequalities for different functions. New Trends Math. Sci. 3;2 (2015), 110-117. MR3358764.



N. Azzouz
Department of Mathematics, Faculty of Science,
University Center Nour Bachir El Bayadh. Algeria.
e-mail: n.azzouz@cu-elbayadh.dz
https://orcid.org/0000-0003-0658-2438



B. Benaissa
Faculty of Material Sciences, University of Tiaret-Algeria.
e-mail: bouharket.benaissa@univ-tiaret.dz
https://orcid.org/0000-0002-1195-6169



http://www.utgjiu.ro/math/sma