Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 19 (2024), 385 -- 399

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

HADAMARD AND QUASI-HADAMARD PROPERTIES FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS

Shashi Kant, Neelmani Gupta and Sanjay Issar

Abstract. In the present paper two subclasses \mathcalSq*(\itNe) and \mathcalKq(\itNe) of analytic functions are introduced by using q-derivative operator. Several properties including Hadamard product, quasi-Hadamard product, the necessary and sufficient condition and coefficient estimates for the functions belonging to these subclasses are obtained.

2020 Mathematics Subject Classification: 30C45, 30C50
Keywords: Hadamard product (or convolution), Quasi-Hadamard product, Subordination between analytic functions, q-derivative operator.

Full text

References

  1. S. Agrawal, S.K. Sahoo, A generalization of starlike functions of order α, Hokkaido Math. J. 46(1)(2017), 15-27. MR3677873 Zbl 1361.30017.

  2. M.K. Aouf, The quasi-Hadamard product of certain analytic functions, Appl. Math. Lett. 21(2008), No. 11, 1184-1187. MR2459845 Zbl 1159.30305.

  3. M.K. Aouf, A.O. Mostafa, H.M. Zayed, Convolution properties for some subclasses of meromorphic functions of complex order, Abstr. Appl. Anal. (2015), Article ID 973613, 6pages. MR3378565. Zbl 1433.30028.

  4. N.E. Cho, V. Kumar, S.S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc. 45(2019), 213–232. MR3913990. Zbl 1409.30009.

  5. H.E. Darwish, The quasi-Hadamard product of certain starlike and convex functions, Appl. Math. Lett. 20(2007), 692-695. MR2314415. Zbl 1111.30009.

  6. R.M. El-Ashwah, M.K. Aouf, N. Breaz , On quasi-Hadamard products of \(p\)-valent functions with negative coefficients defined by using a differential operator, Acta Univ. Apulensis, Math. Inform. 28(2011), 61-70. MR2933981. Zbl 1274.30034.

  7. B.A. Frasin, M.K. Aouf, Quasi-Hadamard product of a generalized class of analytic and univalent functions, Appl. Math. Lett. 23(2010), 347-350. MR2594840. Zbl 1186.30015.

  8. G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990. MR1052153. Zbl 0695.33001.

  9. H.M. Hossen, Quasi-Hadamard product of certain p-valent functions, Demonstr. Math. 33(2000), 277-281. MR1769421. Zbl 0963.30011.

  10. F.H. Jackson, On q-definite integrals, Quart. J. 41(1910), 193-203. JFM 41.0317.04.

  11. F.H. Jackson, q-difference equations, Am. J. Math., 32(1910), 305-314. MR1506108. JFM 41.0502.01.

  12. W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math. 23(1970), 159–177. MR0267103. Zbl 0199.39901.

  13. S. Kant, P.P. Vyas, Convolution properties for certain subclasses of meromorphic p-valent functions, J. Fract. Calc. Appl. 12(2)(2021), 197-203. MR4248928. Zbl 1499.30102.

  14. S. Kumar, A. Çetinkaya ,Coefficient inequalities for certain starlike and convex functions, Hacet. J. Math. Stat.51 (2022) No. 1, 156-171. MR4384265. Zbl 1499.30108.

  15. V. Kumar, Hadamard product of certain starlike functions, J. Math. Anal. Appl. 110(1985), 425-428. MR0805264. Zbl 0585.30013.

  16. V. Kumar, Hadamard product of certain starlike functions II, J. Math. Anal. Appl. 113(1986), 230-234. MR0826672. Zbl 0606.30018.

  17. V. Kumar, Quasi-Hadamard product of certain univalent functions, J. Math. Anal. Appl. 126(1987), 70-77. MR0900527. Zbl 0625.30014.

  18. W.C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Conf. Proc. Lect. Notes Anal. 1(1994), 157-169. Zbl 0823.30007.

  19. A.O. Mostafa, M.K. Aouf, H.M. Zayed, T. Bulboac\brevea,Convolution conditions for subclasses of meromorphic functions of complex order associated with basic Bessel functions, J. Egypt. Math. Soc.25(2017), No. 3, 286-290. MR3682132. Zbl 1376.30009.

  20. S. Owa, On the classes of univalent functions with negative coefficients, Math. Japon. 27(1982), 409-416. MR0667808. Zbl 0497.30015

  21. S. Owa, On the starlike functions of order α and typeβ , Math. Japon.27(1982), No. 6, 723-735. MR0686228. Zbl 0503.30006.

  22. S. Owa, On the Hadamard products of univalent functions, Tamkang J. Math. 14(1983), 15-21. MR0699608. Zbl 0527.30001.

  23. S. Ponnusamy,Convolution properties of some classes of meromorphic univalent functions, Proc. Indian Acad. Sci., Math. Sci. 103(1993), No. 1, 73-89. MR1234200. Zbl 0772.30017.

  24. S.D. Purohit, R.K. Raina, Certain subclasses of analytic functions associated with fractional \(q\)--calculus operators, Math. Scand. 109(2011), 55-70. MR2831147. Zbl 1229.33027.

  25. V. Ravichandran, S.S. Kumar and K.G. Subramanian, Convolution conditions for spirallikeness and convex spirallikeness of certain meromorphic p -valent functions, J. Inequal. Pure Appl. Math. 5(2004), No. 1, pages 7. MR2048487. Zbl 1062.30017.

  26. T. Sekine, On quasi-Hadamard products of p-valent functions with negative coefficients in: H. M. Srivastava and Owa (Editors), Univalent Functions, Fractional Calculus, and Their Applications, Holsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989, 317-328 Zbl 0683.00012.

  27. T.M. Seoudy and M.K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal. 2014(2014), Article ID 846719, pages 7. MR3272218. Zbl 07023188.

  28. K. Sharma, N.K. Jain, V. Ravichandran, Starlike functions associated with a cardioid Afr. Mat. 27(2016), 923–939. MR3536076. Zbl 1352.30015.

  29. L. Shi, H.M. Srivastava, N.E. Cho, M. Arif, Sharp Coefficient Bounds for a Subclass of Bounded Turning Functions with a Cardioid Domain, Axioms 12(8)(2023), 775.

  30. S. Sivaprasad Kumar, G. Kamaljeet, A cardioid domain and starlike functions Anal. Math. Phys. 11(2021), No. 2, pages 35. MR4216363. Zbl 1461.30042.

  31. J. Sokół, J. Stankiewicz Radius of convexity of some subclasses of strongly starlike functions Zesz. Nauk. Politech. Rzesz., Mat. 147(1996), 101-105. MR1473947. Zbl 0880.30014.

  32. A. Soni, P.P. Vyas, S. Kant, Convolution properties for certain subclasses of meromorphic p-valent functions by means of Cassinian ovals, Facta Univ., Ser. Math. Inf. 38(1) (2023), 25-30. MR4630059. Zbl 07742875.

  33. H.M. Srivastava, Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis, Iranian Journal of Science and Technology, Transactions A: Science. 44(2020), 327-344. DOI s40995-019-00815-0. MR064730.

  34. H.M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal. 22(8) (2021), 1501-1520. Zbl 1515.26013.

  35. H.M. Srivastava, A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and Applied Mathematics, Symmetry 13(12)(2021), 1-22. DOI 10.3390/sym13122294.

  36. H.M. Srivastava, M. Arif, M. Raza, Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator, AIMS Mathematics, 6(6)(2021), 5869-5885. DOI 10.3934/math.2021347. MR4236767. Zbl 1484.30026.

  37. H.M. Srivastava, M. Tahir, B. Khan, M. Darus, N. Khan, Q. Ahmad, Certain Subclasses of Meromorphically q-Starlike Functions Associated with the q-Derivative Operators, Ukrainian Mathematical Journal, 73(2022), 1462-1477. DOI 10.1007/s11253-022-02005-5. MR4471232. Zbl 1492.30049.

  38. R. Srivastava, H.M. Zayed, Subclasses of analytic functions of complex order defined by q-derivative operator, Stud. Univ. Babeş-Bolyai Math., 64(1)(2019), 71-80. MR3928603. Zbl 1438.30099.

  39. P.P. Vyas, Convolution conditions for certain subclasses of meromorphic \(p\)-valent functions, Facta Univ., Ser. Math. Inf. 37 (2022), No. 1, 159-168. MR4428552. Zbl 1499.32008.

  40. L.A. Wani, A. Swaminathan, Starlike and convex functions associated with a nephroid domain, Bull. Malays. Math. Sci. Soc. 44(2021), 79–104. hrefhttps://www.ams.org/mathscinet-getitem?mr=4190740MR4190740. Zbl 1461.30046.




Shashi Kant
Department of Mathematics, Government Dungar College,
Bikaner-334001, INDIA.
e-mail: drskant.2007@yahoo.com

Neelmani Gupta
Department of Mathematics, Government Dungar College,
Bikaner-334001, INDIA.
e-mail: neelmanigupta04@gmail.com

Sanjay Issar
Department of Mathematics, Government Dungar College,
Bikaner-334001, INDIA.
e-mail: sanjayissar@gmail.com






https://www.utgjiu.ro/math/sma