Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 20 (2025), 1 -- 12
This work is licensed under a Creative Commons Attribution 4.0 International License.SOME NUMERICAL RADIUS INEQUALITIES FOR d-TUPLES OF OPERATORS
Messaoud Guesba and Ould Ahmed Mahmoud Sid Ahmed
Abstract. Our aim in this paper is to give new numerical radius inequalities for d-tuples of operators on a complex Hilbert space. We prove several inequalities for multivarible operators on a complex Hilbert space. Based on that some numerical radius inequalities due to Dragomir for a single operator.
2020 Mathematics Subject Classification: 47A05, 47A55, 47B15.
Keywords: Joint numerical radius, joint operator norm, inequalities, normal operator.
References
H. Baklouti, K. Feki, On joint spectral radius of commuting operators in Hilbert spaces. Linear Algebra App 557 (2018) 455--463. MR3848282. Zbl 06946348.
J.W. Bunce, Models for n-tuples of noncommuting operators, J. Funct. Anal. 57 (1) (1984) 21--30. MR0744917.
M. Ch\=o, M. Takaguchi, Boundary points of joint numerical ranges, Pacific J. Math. 95 (1) (1981). MR0631656. Zbl 0502.47002.
M. Ch\=o, W. Zelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (2) (1992) 251--258. MR1169792. Zbl 0784.47004.
A.T. Dash, Joint numerical range, Glas. Mat. 7 (1972) 75--81. MR0324443.
S.S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert spaces, Springer Briefs in Mathematics, 2013. MR3112193. Zbl 1467.47006.
S.S. Dragomir, Some inequalities for the norm and the numerical radius of linear operator in Hilbert spaces, Tamkang J. Math., 39 (1) (2008), 1--7. MR2416175. Zbl 1273.47016.
M. Guesba, On some numerical radius inequalities for normal operators in Hilbert spaces, J. Interdiscip. Math, 25 (2) (2022) 463-470.
K.E. Gustafson and D.K.M. Rao, Numerical range, Springer-Verlag, New York, 1997. MR1417493.
J.A.R. Holbrook, Multiplicative propreties of the numerical radius in operator theory, J. Reine Angew. Math. 237 (1969), 166--174. MR0247515.
V. Muller, On the joint spectral radius, Ann. Polon. Math. 66 (1997), 173--182. MR1438337.
M. Sattari, M.S. Moslehian and T. Yamazaki, Some genaralized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl., 470 (2014), 1--12. MR3314313.
G. Popescu, Unitary invariants in multivariable operator theory, Mem. Amer. Math. Soc. 200 (941)(2009) 91. MR2519137. Zbl 1180.47010.
M.P. Vasic, D.J. Keckic, Some inequalities for complex numbers, Math. Balkanica 1 (1971) 282-286. MR0293067.
Messaoud Guesba - corresponding author
Faculty of Exact Sciences, Department of Mathematics.
El Oued University, 39000 Algeria.
E-mail: guesbamessaoud2@gmail.com, guesba-messaoud@univ-eloued.dz
Ould Ahmed Mahmoud Sid Ahmed
Mathematics Department, College of Science.
Jouf University Sakaka 2014. Saudi Arabia.
E-mail : sidahmed@ju.edu.sa
https://www.utgjiu.ro/math/sma