Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 20 (2025), 13 -- 23

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

TOEPLITZ DETERMINANTS FOR A CERTAIN CLASS OF ANALYTIC AND UNIVALENT FUNCTIONS

Abbas Kareem Wanas, Basem Aref Frasin and Adriana Cătaș

Abstract. In this manuscript, we define and study a certain class of analytic and univalent functions defined in the open unit disk U. We derive the coefficient estimates for the first four determinants of the symmetric Toeplitz matrices T2(2), T2(3), T3(1) and T3(2) for the functions in this class. Furthermore, certain special cases for our results are also pointed.

2020 Mathematics Subject Classification: 30C45, 30C20.
Keywords: Toeplitz matrices, coefficient estimates, Analytic functions, Univalent functions.

Full text

References

  1. L.-I. Cot\irlℑA. K. Wanas, Symmetric Toeplitz matrices for a new family of prestarlike functions, Symmetry, 14 (2022), Art. ID 1413, 1-12.

  2. B.A. Frasin,K. Vijaya, M. Kasthuri, Second Hankel Determinant For Bi-Univalent Analytic Functions, TWMS J. Pure Appl. Math. 7 (2), (2016), 85-199. MR3561189. Zbl 1370.30006.

  3. U. Grenander, G. Szegö, Toeplitz Forms and Their Applications, California Monographs in Mathematical Sciences Univ. California Press, Berkeley, 1958. MR0890515. Zbl 0611.47018.

  4. Mishra, A.K.; Gochhayat, P. Second Hankel determinant for a class of analytic functions defined by fractional derivative. Int. J. Math. Math. Sci. 2008 (2008), 153280. MR2392999. Zbl 1158.30308.

  5. Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975. Zbl 0298.30014.

  6. V. Radhika, S. Sivasubramanian, G. Murugusundaramoorthy and J. M. Jahangiri, Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation, J. Complex Anal., 2016 (2016), Art. ID 4960704, 1-4. MR3548424. Zbl 1400.30030.

  7. V. Radhika, S. Sivasubramanian, G. Murugusundaramoorthy and J. M. Jahangiri, Toeplitz matrices whose elements are coefficients of Bazileviℑtions, Open Math., 16 (2018), 1161-1169. MR3871479. Zbl 1412.30072.

  8. H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan and B. Khan, Hankel and Toeplitz Determinants for a Subclass of q-Starlike Functions Associated with a General Conic Domain, Mathematics, 7(181) (2019), 1-15.

  9. H. M. Srivastava, D. Breaz, S. Khan and F. Tchier, Certain new applications of symmetric q-calculus for new subclasses of multivalent functions associated with the cardioid domain, Axioms 13 (2024), 366.

  10. H. M. Srivastava, S. Khan , S. N. Malik, F. Tchier, A. Saliu and Q. Xin, Faber polynomial coefficient inequalities for bi-Bazilevic functions associated with the fibonacci number series and the square-root functions, J. Inequal. Appl., 16 (2024), 1-19. MR4698691. Zbl 1537.30014.

  11. H. M. Srivastava, N. E. Cho, A. A. Alderremy, A. A. Lupas, E. E. Mahmoud and S. Khan, Sharp inequalities for a class of novel convex functions associated with Gregory polynomials, J. Inequal. Appl., 140 (2024), 1-19. MR4822015.

  12. H. Tang, S. Khan, S. Hussain and N. Khan, Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α, AIMS Math., 6(6) (2021), 5421-5439. MR4236740. Zbl 1484.30029.

  13. D. K. Thomas and S. A. Halim, Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions, Bull. Malays. Math. Sci. Soc., 40(4) (2017), 1781-1790. MR3781564. Zbl 1386.30024.

  14. A. K. Wanas, F. M. Sakar, G. I. Oros and L.-I. Cot\irlℑ, Toeplitz determinants for a certain family of analytic functions endowed with Borel distribution, Symmetry, 15 (2023), Art. ID 262, 1-9.

  15. K. Ye and L.-H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16 (2016), 577-598. MR3494505. Zbl 1342.15024.

  16. P. Zaprawa, Hankel Determinants for Univalent Functions Related to the Exponential Function. Symmetry 11(10) (2019), 1211.




Abbas Kareem Wanas
Department of Mathematics, College of Science
University of Al-Qadisiyah, Al Diwaniyah, Al-Qadisiyah, Iraq.
e-mail: abbas.kareem.w@qu.edu.iq

Basem Aref Frasin - corresponding author
Department of Mathematics, Faculty of Science,
Al al-Bayt University, Mafraq, Jordan
e-mail: bafrasin@yahoo.com

Adriana Cătaș
Department of Mathematics and Computer Science
University of Oradea, 1 University Street, 410087 Oradea, Romania.
e-mail: acatas@gmail.com

https://www.utgjiu.ro/math/sma